969 resultados para TOPOLOGY
Resumo:
Este trabalho apresenta o estudo comparativo do desempenho de três topologias de conversores do sistema monofásico para o sistema trifásico com número reduzido de componentes, para o acionamento de um motor de indução do tipo rotor gaiola de esquilo. O funcionamento de cada topologia é descrito e simulado digitalmente. O desempenho desses conversores é avaliado em diferentes modos de operação, com sequência de fase positiva ou negativa, com ênfase na qualidade de energia em termos de redução da distorção harmônica total e da melhoria do fator de potência na fonte. Com vistas à redução de custos, foi desenvolvido um protótipo experimental baseado no uso de módulo integrado de chaves semicondutoras de potência e de um microcontrolador de baixo custo. Os resultados experimentais se equiparam aos resultados obtidos por simulação.
Resumo:
A partir da análise das diversas versões de Malhas da Liberdade (1976-2008), obra de Cildo Meireles, o ensaio Cama de gato traça um percurso rizomático por entre as transformações e inflexões das estratégias políticas e de alteridade da produção do artista e, de modo mais amplo, de parte da recente arte brasileira. Atravessando aspectos como a história da arte, a subjetividade, a economia e a história, o ensaio faz uma leitura sobre as metaformoses dos modos de participação ativados e propostos pela prática artística, atentando para suas implicações políticas e ideológicas. Por entre a cama de gato de ideias e interpretações do ensaio estão, ainda, reflexões sobre a historiografia da arte brasileira e seu processo de internacionalização, além de uma preocupação com a relação entre arte, participação, alteridade, topologia, espaço social e democracia
Resumo:
Uma simulação numérica que leva em conta os efeitos de estratificação e mistura escalar (como a temperatura, salinidade ou substância solúvel em água) é necessária para estudar e prever os impactos ambientais que um reservatório de usina hidrelétrica pode produzir. Este trabalho sugere uma metodologia para o estudo de escoamentos ambientais, principalmente aqueles em que o conhecimento da interação entre a estratificação e mistura pode dar noções importantes dos fenômenos que ocorrem. Por esta razão, ferramentas de simulação numérica 3D de escoamento ambiental são desenvolvidas. Um gerador de malha de tetraedros do reservatório e o modelo de turbulência algébrico baseado no número de Richardson são as principais ferramentas desenvolvidas. A principal dificuldade na geração de uma malha de tetraedros de um reservatório é a distribuição não uniforme dos pontos relacionada com a relação desproporcional entre as escalas horizontais e verticais do reservatório. Neste tipo de distribuição de pontos, o algoritmo convencional de geração de malha de tetraedros pode tornar-se instável. Por esta razão, um gerador de malha não estruturada de tetraedros é desenvolvido e a metodologia utilizada para obter elementos conformes é descrita. A geração de malha superficial de triângulos utilizando a triangulação Delaunay e a construção do tetraedros a partir da malha triangular são os principais passos para o gerador de malha. A simulação hidrodinâmica com o modelo de turbulência fornece uma ferramenta útil e computacionalmente viável para fins de engenharia. Além disso, o modelo de turbulência baseado no número de Richardson leva em conta os efeitos da interação entre turbulência e estratificação. O modelo algébrico é o mais simples entre os diversos modelos de turbulência. Mas, fornece resultados realistas com o ajuste de uma pequena quantidade de parâmetros. São incorporados os modelos de viscosidade/difusividade turbulenta para escoamento estratificado. Na aproximação das equações médias de Reynolds e transporte de escalar é utilizando o Método dos Elementos Finitos. Os termos convectivos são aproximados utilizando o método semi-Lagrangeano, e a aproximação espacial é baseada no método de Galerkin. Os resultados computacionais são comparados com os resultados disponíveis na literatura. E, finalmente, a simulação de escoamento em um braço de reservatório é apresentada.
Resumo:
We present full volumetric (three-dimensional) time-resolved (+one-dimensional) measurements of the velocity field in a large water mixing tank, allowing us to assess spatial and temporal rotational energy (enstrophy) and turbulent energy dissipation intermittency. In agreement with previous studies, highly intermittent behavior is observed, with intense coherent flow structures clustering in the periphery of larger vortices. However, further to previous work the full volumetric measurements allow us to separate out the effects of advection from other effects, elucidating not only their topology but also the evolution of these intense events, through the local balance of stretching and diffusion. These findings contribute toward a better understanding of the intermittency phenomenon, which should pave the way for more accurate models of the small-scale motions based on an understanding of the underlying flow physics.
Resumo:
We describe a method to explore the configurational phase space of chemical systems. It is based on the nested sampling algorithm recently proposed by Skilling (AIP Conf. Proc. 2004, 395; J. Bayesian Anal. 2006, 1, 833) and allows us to explore the entire potential energy surface (PES) efficiently in an unbiased way. The algorithm has two parameters which directly control the trade-off between the resolution with which the space is explored and the computational cost. We demonstrate the use of nested sampling on Lennard-Jones (LJ) clusters. Nested sampling provides a straightforward approximation for the partition function; thus, evaluating expectation values of arbitrary smooth operators at arbitrary temperatures becomes a simple postprocessing step. Access to absolute free energies allows us to determine the temperature-density phase diagram for LJ cluster stability. Even for relatively small clusters, the efficiency gain over parallel tempering in calculating the heat capacity is an order of magnitude or more. Furthermore, by analyzing the topology of the resulting samples, we are able to visualize the PES in a new and illuminating way. We identify a discretely valued order parameter with basins and suprabasins of the PES, allowing a straightforward and unambiguous definition of macroscopic states of an atomistic system and the evaluation of the associated free energies.
Resumo:
Considering some predictive mechanisms, we show that ultrafast average-consensus can be achieved in networks of interconnected agents. More specifically, by predicting the dynamics of the network several steps ahead and using this information in the design of the consensus protocol of each agent, drastic improvements can be achieved in terms of the speed of consensus convergence, without changing the topology of the network. Moreover, using these predictive mechanisms, the range of sampling periods leading to consensus convergence is greatly expanded compared with the routine consensus protocol. This study provides a mathematical basis for the idea that some predictive mechanisms exist in widely-spread biological swarms, flocks, and networks. From the industrial engineering point of view, inclusion of an efficient predictive mechanism allows for a significant increase in the speed of consensus convergence and also a reduction of the communication energy required to achieve a predefined consensus performance.
Resumo:
This paper presents the analysis and design of a new low power and highly linear mixer topology based on a newly reported differential derivative superposition method. Volterra series and harmonic balance are employed to investigate its linearisation mechanism and to optimise the design. A prototype mixer has been designed and is being implemented in 0.18μm CMOS technology. Simulation shows this mixer achieves 19.7dBm IIP3 with 10.5dB conversion gain, 13.2dB noise figure at 2.4GHz and only 3.8mW power consumption. This performance is competitive with already reported mixers.
Resumo:
We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, ktonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. Copyright (C) 2002 S. KargerAG, Basel.
Resumo:
This paper describes a solid state electrical emulator devised for laboratory testing of power conditioning electronics for direct drive linear wave energy converters (DDLWEC). Two rectification strategies are considered; a uni-directional boost topology, and an H-bridge which may be controlled in either uni- or bidirectional modes.
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
Accurate simulation of rolling-tyre vibrations, and the associated noise, requires knowledge of road-surface topology. Full scans of the surface types in common use are, however, not widely available, and are likely to remain so. Ways of producing simulated surfaces from incomplete starting information are thus needed. In this paper, a simulation methodology based solely on line measurements is developed, and validated against a full two-dimensional height map of a real asphalt surface. First the tribological characteristics-asperity height, curvature and nearest-neighbour distributions-of the real surface are analysed. It is then shown that a standard simulation technique, which matches the (isotropic) spectrum and the probability distribution of the height measurements, is unable to reproduce these characteristics satisfactorily. A modification, whereby the inherent granularity of the surface is enforced at the initialisation stage, is introduced, and found to produce simulations whose tribological characteristics are in excellent agreement with the measurements. This method will thus make high-fidelity tyre-vibration calculations feasible for researchers with access to line-scan data only. In addition, the approach to surface tribological characterisation set out here provides a template for efficient cataloguing of road textures, as long as the resulting information can subsequently be used to produce sample realisations. A third simulation algorithm, which successfully addresses this requirement, is therefore also presented. © 2011 Elsevier B.V.
Resumo:
Mitochondrial DNA restriction maps for 12 restriction enzymes of four species of muntjacs-Indian muntjac (M. muntjak), Gongshan muntjac (M. gongshanensis), black muntjac (M. crinifrons), and Chinese muntjac (M. reevesi)-were compared to estimate the phylogenetic relationships among them. Phylogenetic trees were constructed by both distance and parsimony methods. The two resulting trees share a similar topology, which indicates that the black muntjac and the Gongshan muntjac are closely related, followed by the Chinese muntjac; the Indian muntjac is the sister taxon to all the other muntjacs.
Resumo:
Computational Design has traditionally required a great deal of geometrical and parametric data. This data can only be supplied at stages later than conceptual design, typically the detail stage, and design quality is given by some absolute fitness function. On the other hand, design evaluation offers a relative measure of design quality that requires only a sparse representation. Quality, in this case, is a measure of how well a design will complete its task.
The research intends to address the question: "Is it possible to evaluate a mechanical design at the conceptual design phase and be able to make some prediction of its quality?" Quality can be interpreted as success in the marketplace, success in performing the required task, or some other user requirement. This work aims to determine a minimum level of representation such that conceptual designs can be usefully evaluated without needing to capture detailed geometry. This representation will form the model for the conceptual designs that are being considered for evaluation. The method to be developed will be a case-based evaluation system, that uses a database of previous designs to support design exploration. The method will not be able to support novel design as case-based design implies the model topology must be fixed.
Resumo:
Iron is required for many microbes and pathogens for their survival and proliferation including Leishmania which cause leishmaniasis. Leishmaniasis is an increasingly serious infectious disease with a wide spectrum of clinical manifestations. These range from localized cutaneous leishmaniasis (CL) lesions to a lethal visceral form. Certain strains such as BALB/c mice fail to control L. major infection and develop progressive lesions and systemic disease. These mice are thought to be a model of non-healing forms of the human disease such as kala-azar or diffuse cutaneous leishmaniasis. Progression of disease in BALB/c mice has been associated with the anemia, in last days of their survival, the progressive anemia is considered to be one of the reasons of their death. Ferroportin (Fpn), a key regulator of iron homeostasis is a conserved membrane protein that exports iron across the duodenal enterocytes as well as macrophages and hepatocytes into the blood circulation. Fpn has also critical influence on survival and proliferation of many microorganisms whose growth is dependent upon iron, thus preparation of Fpn is needed to study the role of iron in immune responses and pathogenesis of micoorganisms. To prepare and characterize a recombinant ferroportin, total RNA was extracted from Indian zebrafish duodenum, and used to synthesize cDNA by RT-PCR. PCR product was first cloned in Topo TA vector and then subcloned into the GFP expression vector pEGFP–N1. The final resulted plasmid (pEGFP-ZFpn) was used for expression of FPN-EGFP protein in Hek 293T cells. The expression was confirmed by fluorescence microscopy and flow cytometery. Recombinant Fpn was further characterized by submission of its predicted amino acid sequences to the TMHMM V2.0 prediction server (hidden Markov model), NetOGlyc 3.1 server and NetNGlyc 3.1 server. Data emphasised that obtained Fpn from indian zebrafish contained eight transmembrane domains with N- and C-termini inside the cytoplasm and harboured 78 mucin-type glycosylated amino acid. The results indicate that the prepared and characterized recombinant Fpn protein has no membrane topology difference compared to other Fpn described by other researcher. Our next aim was to deliver recombinant plasmid (pEGFP-ZFpn) to entrocyte cells. However, naked therapeutic genes are rapidly degraded by nucleases, showing poor cellular uptake, nonspecificity to the target cells, and low transfection efficiency. The development of safe and efficient gene carriers is one of the prerequisites for the success of gene therapy. Chitosan and alginate 139 polymers were used for oral gene carrier because of their biodegradability, biocompatibility and their mucoadhesive and permeability-enhancing properties in the gut. Nanoparticles comprising Alginate/Chitosan polymers were prepared by pregel preparation method. The resulting nanoparticles had a loading efficiency of 95% and average size of 188 nm as confirmed by PCS method and SEM images had showed spherical particles. BALB/c mice were divided to three groups. The first and second group were fed with chitosan/alginate nanoparticles containing the pEGFP-ZFpn and pEGFP plasmid, respectively (30 μgr/mice) and the third group (control) didn’t get any nanoparticles. The result showed BALB/c mice infected by L.major, resulted in higher hematocryte and iron level in pEGFP-ZFpn fed mice than that in other groups. Consentration of cytokines determined by ELISA showed lower levels of IL-4 and IL-10 and higher levels of IFN-γ/IL-4 and IFN-γ/IL-10 ratios in pEGFP-ZFpn fed mice than that in other groups. Morover more limited increase of footpad thickness and significant reduction of viable parasites in lymph node was seen in pEGFP-ZFpn fed mice. The results showed the first group exhibited a highr hematocryte and iron compared to the other groups. These data strongly suggests the in vivo administration of chitosan/alginate nanoparticles containing pEGFP-ZFpn suppress Th2 response and may be used to control the leishmaniasis .