1000 resultados para Técnicas alternativas
Resumo:
The determination of pesticide residues in water samples by Liquid Chromatography require sample preparation for extraction and enrichment of the analytes with the minimization of interferences to achieve adequate detection limits. The Solid Phase Extraction (SPE), Solid Phase Microextraction (SPME), Stir Bar Sorptive Extraction (SBSE) and Dispersive Liquid-Liquid Microextraction (DLLME) techniques have been widely used for extraction of pesticides in water. In this review, the principles of these sample preparation techniques associated with the analysis by Liquid Chromatography with Diode Array Detection (LC-DAD) or Mass Spectrometry (LC-MS) are described and an overview of several applications were presented and discussed.
Resumo:
High-throughput screening (HTS) and virtual screening (VS) are useful methods employed in drug discovery, allowing the identification of promising hits for lead optimization. The efficiency of these approaches depends on a number of factors, such as the organization of high quality databases of compounds and the parameterization of essential components of the screen process. This brief review presents the basic principles of the HTS and VS methods, as well as a perspective of the utility and integration of these drug design approaches, highlighting current opportunities and future challenges in medicinal chemistry.
Resumo:
This review considers some of the difficulties encountered with the analysis of basic solutes using reversed-phase chromatography, such as detrimental interaction with stationary phase silanol groups. Methods of overcoming these problems in reversed-phase separations, by judicious selection of the stationary phase and mobile phase conditions, are discussed. Developments to improve the chemical and thermal stability of stationary phases are also reviewed. It is shown that substantial progress has been made in the manufacturing of stationary phases, enabling their use over a wide variety of experimental conditions. In addition, general measures to significantly extend their lifespan are discussed.
Resumo:
TiO2 nanotubes were synthesized by hydrothermal method and doped with three nitrogen compounds to enhance photocatalytic activity under visible light. Catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and specific surface area and pore volume determined by BET and BJH methods, respectively. Photocatalytic activity was evaluated by photodegradation of rhodamine B under visible and UV radiations. Results showed doped-nanotubes were more efficient under visible light. The best photocatalytic activity was for sample NTT-7-600/NH3I, being 30% higher than the non-doped sample.
Resumo:
In this paper studies based on Multilayer Perception Artificial Neural Network and Least Square Support Vector Machine (LS-SVM) techniques are applied to determine of the concentration of Soil Organic Matter (SOM). Performances of the techniques are compared. SOM concentrations and spectral data from Mid-Infrared are used as input parameters for both techniques. Multivariate regressions were performed for a set of 1117 spectra of soil samples, with concentrations ranging from 2 to 400 g kg-1. The LS-SVM resulted in a Root Mean Square Error of Prediction of 3.26 g kg-1 that is comparable to the deviation of the Walkley-Black method (2.80 g kg-1).
Resumo:
The determination of veterinary drug residues in foods of animal origin is an important issue because of the risk these compounds pose to human health in addition to their persistence and tendency to bioaccumulate. In recent years, significant progress has been made in the area and this review presents the state of the art in sample preparation procedures associated with chromatographic techniques coupled to mass spectrometry for multiresidue determination of veterinary drugs in food of animal origin at concentration levels suitable for the control of residues and contaminants in food.
Resumo:
This paper describes the development of methods in micro-scale for the determination of K, Mg, Na and Zn in meat by atomic spectrometry techniques. The limits of detection (LOD) for K and Na by microdigestion were 0.18 and 0.20 mg g-1, respectively whereas LOD for Mg and Zn by microsolubilization with TMAH were 2.40 and 18.4 µg g-1, respectively. The RSD values were lower than 6.0% and the CRMs analyzed showed values with 95% agreement. The proposed methods are simple, fast and use small amounts of sample (around 10 mg) yet do not require special equipment for sample preparation.
Resumo:
Use of biomass as an alternative to nonrenewable feedstock for energy, materials, and chemicals is currently a prominent theme for industry and R Countries like Brazil, USA, and Germany are spending resources and efforts to promote a green economy based on biomass supply chains. Chemical analysis is an important tool to ensure quality, reliability, and to suggest the best potential use for the biomass, thereby enhancing its economic potential. Analytical techniques can identify chemical components, characterize their properties, and determine their concentration. This article discusses the commonly employed techniques and their application in chemical analysis of biomass and its products.
Resumo:
Cocaine is usually seized mixed with a wide variety of adulterants such as benzocaine, lidocaine, caffeine, and procaine. The forensic identification of cocaine in these street drug mixtures is normally performed using colorimetric testing kits, but these tests may suffer from interferences, producing false-positive results. Here, we describe the use of analytical techniques including attenuated total reflection Fourier transform infrared (ATR-FTIR) and ultraviolet-visible (UV-VIS) spectroscopies to distinguish between cocaine and other adulterants (lidocaine, promethazine, powdered milk and yeast) that yield positive results on the Scott test using the thiocyanate cobalt reagent. A further 13 substances were also analyzed using the Scott test.
Resumo:
This paper describes the evaluation of simple and fast solubilization methods for the determination of Ca, Mg, and K in glycerin samples from biodiesel production by atomic spectrometry. The solubilization in water was compared with two other methods: solubilization in formic acid and solubilization in ethanol. Using solubilization in water, determination of the three analytes was possible; the values of limits of detection for Ca, K, Mg were 0.31, 0.06, and 0.16 mg kg−1, respectively. Because no adequate reference material was available, the accuracy was evaluated by assessing the recoveries tests with both solubilization methods; the evaluation ranged from 90% to 115%, with values of relative standard deviation >8%, indicating good accuracy of the measure. Four crude glycerin samples obtained from biodiesel plants of Rio Grande do Sul were analyzed after treatment with the different methods of solubilization, and the obtained results of Ca, Mg, and K concentration were in agreement with the values obtained from both solubilization methods. Therefore, solubilization in water is concluded to be a simpler, faster, and viable method for sample preparation of glycerin.
Resumo:
Cyclic voltammetry has become one of the most useful tools in modern electrochemistry, but the use of digital potentiostats should be treated with caution by users. Staircase Voltammetry utilizes some parameters to build up the potential ramp. However, for some electrochemical processes, the signal response can be different compared with that acquired using true linear sweep (analogic signal). In this work, the role of SCV parameters in current response during the hydrogen electrochemical adsorption/desorption reaction on a platinum surface was studied. In addition, the transient current in each step comprising the ramp was investigated. The results showed that with a step height of 2 mV, the SCV response matches that recorded by linear sweep voltammetry. From the transient current study, two kinds of capacity were identified: non-faradaic and faradaic charge.
Resumo:
Teaching classes and events regarding the molecular aspects of drug-receptor interactions is not an easy task. The ligand stereochemistry and the spatial arrangement of the macromolecular targets highly increase the complexity of the process. In this context, the use of alternative and more playful approaches could allow students to gain a more thorough understanding of this important topic in medicinal chemistry. Herein, we describe a practical teaching approach that uses computational strategies as a tool for drug-receptor interaction studies performed for angiotencsin converting enzyme inhibitors (ACEi). Firstly, the students learn how to find the crystallographic structure (enzyme-ligand complex). Then, they proceed to the treatment of crude crystallographic data. Thereafter, they learn how to analyze the positioning of the drug on the active site of the enzyme, looking for regions related to the molecular recognition. At the end of the study, students can summarize the molecular requirements for the interaction and the structure-activity relationships of the studied drugs.
Resumo:
A antracnose e a ramulose são doenças do algodoeiro (Gossypium hirsutum) causadas, respectivamente, por Colletotrichum gossypii e C. gossypii var. cephalosporioides, sendo a ramulose a mais importante sob o ponto de vista de prejuízos causados. Por se tratarem de fungos transmitidos por sementes, de difícil diferenciação por métodos convencionais, o desenvolvimento de metodologia usando técnicas moleculares é uma opção que se dispõe na busca de maior precisão e rapidez. O presente trabalho objetivou associar informações do teste de patogenicidade com marcadores bioquímicos e moleculares de DNA/RAPD, visando a identificação e diferenciação do complexo Colletotrichum. Foram usados dez isolados, sendo três classificados como causadores de antracnose e sete de ramulose, pelo teste de patogenicidade. Os marcadores bioquímicos não se mostraram eficientes para a distinção dos isolados causadores da ramulose e da antracnose. Na análise de RAPD, o valor de similaridade encontrado para os dois grupos foi de 51,7%, confirmando a potencialidade da técnica para diferenciar tais fungos.
Resumo:
Neste trabalho realizou-se um estudo de caracterização metalúrgica do amálgama dentário Dispersalloy produzido pela empresa Dentsply Ind. e Com. Ltda., por meio da análise da sua composição química, utilizando-se a técnica espectrofotométrica de absorção atômica, procedendo-se em seguida, a análise metalográfica, utilizando-se microscopia eletrônica de varredura. A seguir, foi realizado um estudo de resistência à corrosão, utilizando-se técnicas eletroquímicas tradicionais de polarização e espectroscopia de impedância, em meio e condições que simulam a agressividade do ambiente bucal. Para isto, as amostras foram obtidas pelo processo de amalgamação mecânica, método usualmente utilizado pelos dentistas no próprio consultório, para a preparação da restauração dentária. A liga comercial Dispersalloy, representante da categoria de amálgamas de alto teor de cobre, tipo fase dispersa, foi escolhida para este estudo por ser bastante comercializada nos mercados nacional e internacional e, também por ser uma liga metálica moderna, bastante estudada, mas que ainda sofre corrosão no meio bucal.
Resumo:
O aprimoramento dos métodos analíticos faz com que a busca por novas tecnologias rápidas, exatas e de custo reduzido estejam constantemente sendo revistas e avaliadas. O objetivo deste trabalho foi comparar três formas de extração de K (decomposição nítro-perclórica, extração com água e extração com solução diluída de HCl) de amostras da parte aérea de capim-tanzânia (Panicum maximum cv. Tanzânia) e de alfafa (Medicago sativa cv. Crioula). Os métodos de extração de K de amostras de tecido vegetal de capim-tanzânia e alfafa com solução ácida diluída ou com água apresentaram-se equivalentes ao método tradicional da decomposição nítro-perclórica e podem substituí-lo.