907 resultados para System safety


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bibliography: p. 17-19.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies from across the world have shown that clinical mistakes are a major threat to the safety of patient care (World Health Organisation 2004). For the National Health Service (NHS) of England and Wales it is estimated that one in ten hospital patients experience some form of error, and each year these cost the service over £2billion in remedial care (Department of Health 2000). Unsurprisingly, ‘patient safety’ is now a major international health policy priority, questioning the efficacy of existing regulatory practices and proposing a new ethos of learning. Within England and Wales, the National Patient Safety Agency (NPSA) has been created to lead policy development and champion service-wide learning, whilst throughout the NHS the National Reporting and Learning System (NRLS) has been introduced to enable this learning (NPSA 2003). This paper investigates the extent to which, in seeking to better manage the threats to patient safety, this policy agenda represents a transition in medical regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 20: Health and Care Networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment quality from Paranagua Estuarine System (PES), a highly important port and ecological zone, was evaluated by assessing three lines of evidence: (1) sediment physical-chemical characteristics; (2) sediment toxicity (elutriates, sediment-water interface, and whole sediment); and (3) benthic community structure. Results revealed a gradient of increasing degradation of sediments (i.e. higher concentrations of trace metals, higher toxicity, and impoverishment of benthic community structure) towards inner PES. Data integration by principal component analysis (PCA) showed positive correlation between some contaminants (mainly As, Cr, Ni, and Pb) and toxicity in samples collected from stations located in upper estuary and one station placed away from contamination sources. Benthic community structure seems to be affected by both pollution and natural fine characteristics of the sediments, which reinforces the importance of a weight-of-evidence approach to evaluate sediments of PES. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the efficacy and safety of methotrexate (MTX) nanoparticles in pediatric patients with inflammatory bowel disease (IBD). Methods: In this randomized, open-label clinical study, 28 pediatric patients with moderate to severe IBD were randomly assigned to treatment (MTX nanoparticles,15 mg/week) or control (azathioprine, AZA, 2 mg/kg/day) group. Nanoparticles were synthesized by adding calcium chloride to sodium alginate solution containing MTX, and was further treated with poly-L-lysine aqueous solution. The nanoparticles were evaluated for particle size, zeta potential and drug encapsulation efficacy. Erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, alanine transaminase, and disease activity scores were used to assess IBD remission. Results: Nanoparticle size, zeta potential and encapsulation efficacy were 164.4 ± 6.9 nm, -32.6 ± 3.7 mV, and 97.8 ± 4.2 %, respectively. After 12 weeks of therapy, the mean Pediatric Crohn\'s Disease Activity Index (PCDAI) scores for control and treatment groups were 22.3 ± 2.14 and 16.8 ± 1.87, respectively, while mean Pediatric Ulcerative Colitis Activity (PUCAI) Index scores were 24.3 ± 1.47 and 18.7 ± 1.92, respectively. Eight patients in the treatment and five patients in the control group achieved remission. Biochemical parameters varied significantly between the groups. Conclusion: MTX nanoparticles are safe and more effective than standard first-line IBD therapy. However, further studies are required to determine the suitability of the formulation for therapeutic use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Errors in the decision-making process are probably the main threat to patient safety in the prehospital setting. The reason can be the change of focus in prehospital care from the traditional "scoop and run" practice to a more complex assessment and this new focus imposes real demands on clinical judgment. The use of Clinical Guidelines (CG) is a common strategy for cognitively supporting the prehospital providers. However, there are studies that suggest that the compliance with CG in some cases is low in the prehospital setting. One possible way to increase compliance with guidelines could be to introduce guidelines in a Computerized Decision Support System (CDSS). There is limited evidence relating to the effect of CDSS in a prehospital setting. The present study aimed to evaluate the effect of CDSS on compliance with the basic assessment process described in the prehospital CG and the effect of On Scene Time (OST). METHODS: In this time-series study, data from prehospital medical records were collected on a weekly basis during the study period. Medical records were rated with the guidance of a rating protocol and data on OST were collected. The difference between baseline and the intervention period was assessed by a segmented regression. RESULTS: In this study, 371 patients were included. Compliance with the assessment process described in the prehospital CG was stable during the baseline period. Following the introduction of the CDSS, compliance rose significantly. The post-intervention slope was stable. The CDSS had no significant effect on OST. CONCLUSIONS: The use of CDSS in prehospital care has the ability to increase compliance with the assessment process of patients with a medical emergency. This study was unable to demonstrate any effects of OST.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historically SCDOT ranks in the top 10 each year for highway conditions and cost-effectiveness as rated by the Reason Foundation. With billions of dollars invested and billions to be invested it makes sense to invest the public's tax dollars as wisely as possible. Therefore, assessing what we have or better yet what condition what we have is in can be vital to public safety and setting priorities. The focus of this project is on the maintenance responsibility of Roadway Inspection as outlined in SCDOT Engineering Directive Memorandum #8. This memorandum is a portion of the way SCDOT provides for the safety of the traveling public and keeps South Carolina's most expensive asset in working order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clouds are important in weather prediction, climate studies and aviation safety. Important parameters include cloud height, type and cover percentage. In this paper, the recent improvements in the development of a low-cost cloud height measurement setup are described. It is based on stereo vision with consumer digital cameras. The cameras positioning is calibrated using the position of stars in the night sky. An experimental uncertainty analysis of the calibration parameters is performed. Cloud height measurement results are presented and compared with LIDAR measurements.