946 resultados para Syring, Dick
Resumo:
The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids.
Resumo:
Au contents have been determined in 77 samples of basalts and sheeted diabase dikes. Pd has been evaluated in 39 of the samples. The mean amount of Au is 3 parts per billion (ppb), fluctuating from 0.4 to 10 ppb. Au contents appear to be independent in type and intensity of alteration as well as with depth sub-bottom, although in the lower part of Hole 504B, 1900-2000 mbsf, Au contents are markedly decreased (mean: 1.1 ppb) and show a distinct correlation with a decrease in Zn contents. Pd contents vary from 2 to 360 ppb (mean: 37 ppb) Pd is higher in basalts (53.7 ppb) and lower in diabase dikes (30 ppb), especially in moderately or strongly altered ones (12.5 ppb).
Resumo:
Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to not, vert, similar ~103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng/l range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng/l while between 0.5 and 5 ng/l accuracy and precision are element dependent.