974 resultados para Synthetic Traffic Generation
Resumo:
The network scenario is that of an infrastructure IEEE 802.11 WLAN with a single AP with which several stations (STAs) are associated. The AP has a finite size buffer for storing packets. In this scenario, we consider TCP-controlled upload and download file transfers between the STAs and a server on the wireline LAN (e.g., 100 Mbps Ethernet) to which the AP is connected. In such a situation, it is well known that because of packet losses due to finite buffers at the AP, upload file transfers obtain larger throughputs than download transfers. We provide an analytical model for estimating the upload and download throughputs as a function of the buffer size at the AP. We provide models for the undelayed and delayed ACK cases for a TCP that performs loss recovery only by timeout, and also for TCP Reno. The models are validated incomparison with NS2 simulations.
Resumo:
In the last decade, huge breakthroughs in genetics - driven by new technology and different statistical approaches - have resulted in a plethora of new disease genes identified for both common and rare diseases. Massive parallel sequencing, commonly known as next-generation sequencing, is the latest advance in genetics, and has already facilitated the discovery of the molecular cause of many monogenic disorders. This article describes this new technology and reviews how this approach has been used successfully in patients with skeletal dysplasias. Moreover, this article illustrates how the study of rare diseases can inform understanding and therapeutic developments for common diseases such as osteoporosis. © International Osteoporosis Foundation and National Osteoporosis Foundation 2013.
Resumo:
Software packages NUPARM and NUCGEN, are described, which can be used to understand sequence directed structural variations in nucleic acids, by analysis and generation of non-uniform structures. A set of local inter basepair parameters (viz. tilt, roll, twist, shift, slide and rise) have been defined, which use geometry and coordinates of two successive basepairs only and can be used to generate polymeric structures with varying geometries for each of the 16 possible dinucleotide steps. Intra basepair parameters, propeller, buckle, opening and the C6...C8 distance can also be varied, if required, while the sugar phosphate backbone atoms are fixed in some standard conformation ill each of the nucleotides. NUPARM can be used to analyse both DNA and RNA structures, with single as well as double stranded helices. The NUCGEN software generates double helical models with the backbone fixed in B-form DNA, but with appropriate modifications in the input data, it can also generate A-form DNA ar rd RNA duplex structures.
Resumo:
Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilised Next Generation Sequencing (NGS) to screen the coding sequence, exon-intron boundaries and UTRs of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which 9 were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.
Resumo:
This paper presents two simple simulation and modelling tools designed to aid in the safety assessment required for unmanned aircraft operations within unsegregated airspace. First, a fast pair-wise encounter generator is derived to simulate the See and Avoid environment. The utility of the encounter generator is demonstrated through the development of a hybrid database and a statistical performance evaluation of an autonomous See and Avoid decision and control strategy. Second, an unmanned aircraft mission generator is derived to help visualise the impact of multiple persistent unmanned operations on existing air traffic. The utility of the mission generator is demonstrated through an example analysis of a mixed airspace environment using real traffic data in Australia. These simulation and modelling approaches constitute a useful and extensible set of analysis tools, that can be leveraged to help explore some of the more fundamental and challenging problems facing civilian unmanned aircraft system integration.
Resumo:
The role of Acidithiobacillus group of bacteria in acid generation and heavy metal dissolution was studied with relevance to some Indian mines. Microorganisms implicated in acid generation such as Acidithiobacillus Acidithicibacillus thiooxidans and Leptospirillum ferrooxidans were isolated from abandoned mines, waste rocks and tailing dumps. Arsenite oxidizing Thiomonas and Bacillus group of bacteria were isolated and their ability to oxidize As (111) to As (V) established. Mine isolated Sulfate reducing bacteria were used to remove dissolved copper, zinc, iron and arsenic from solutions.
Resumo:
Arabinomannan-containing glycolipids, relevant to the mycobacterial cell-wall component lipoarabinomannan, were synthesized by chemical methods. The glycolipids were presented with tri- and tetrasaccharide arabinomannans as the sugar portion and a double alkyl chain as the lyophilic portion. Following synthesis, systematic biological and biophysical studies were undertaken in order to identify the effects of the glycolipids during mycobacterium growth. The studies included mycobacterial growth, biofilm formation and motility assays. From the studies, it was observed that the synthetic glycolipid with higher arabinan residues inhibited the mycobacterial growth, lessened the biofilm formation and impaired the motility of mycobacteria. A surface plasmon resonance study involving the immobilized glycan surface and the mycobacterial crude lysates as analytes showed specificities of the interactions. Further, it was found that cell lysates from motile bacteria bound oligosaccharide with higher affinity than non-motile bacteria.
Resumo:
The stepwise synthesis of amino terminal pentapeptide of alamethicin, Z-Aib-Pro-Aib-Ala-Aib-OMe, by the dicyclohexylcarbodiimide mediated couplings leads to extensive racemization at the Ala and Pro residues. Racemization is largely suppressed by the use of additives like N-hydroxysuccinimide and 1-hydroxybenzotriazole. The presence of diastereomeric peptides may be detected by the observation of additional methyl ester and benzylic methylene signals in the 270 MHz 1H NMR spectra. Unambiguous spectral assignment of the signals to the diastereomers has been carried out by the synthesis and NMR studies of the D-Ala tetra and pentapeptides. The racemization at Pro is of particular relevance in view of the reported lack of inversion at C-terminal Pro on carboxyl activation.
Resumo:
Ce0.67Cr0.33O2.11 was synthesized by hydrothermal method using diethylenetriamine as complexing agent (Chem. Mater. 2008, 20, 7268). Ce0.67Cr0.33O2.11 being the only compound likes UO2+delta to have excess oxygen, it releases a large proportion of its lattice oxygen (0.167 M [O]/mole of compound) at relatively low temperature (465 degrees C) directly and it has been utilized for generation of H-2 by thermo-splitting of water. An almost stoichiometric amount of H-2 (0.152 M/Mole of compound) is generated at much lower temperature (65 degrees C). There is an almost comparable amount of oxygen release and hydrogen generation over this material at very low temperature comparedto other CeO2-MOx (Mn, Fe, Cu, and Ni) mixed-oxide solid solutions (O-2 evolution >= 1300 degrees C and H-2 generation at 1000 degrees C). The reversible nature of oxygen release and intake of this material is attributed to its fluorite Structure and coupling between the Ce4+/Ce3+ and Cr4+/6+/Cr3+ redox couples. Compound shows reversible oxygen release and intake by H2O absorption and subsequent hydrogen release to gain parent structure and hence this material can be utilized for generation of H-2 at very low temperature by thermo-chemical splitting of water.
Resumo:
Due to their unique size- and shape-dependent physical and chemical properties, highly hierarchically-ordered nanostructures have attracted great attention with a view to application in emerging technologies, such as novel energy generation, harvesting, and storage devices. The question of how to get controllable ensembles of nanostructures, however, still remains a challenge. This concept paper first summarizes and clarifies the concept of the two-step self-assembly approach for the synthesis of hierarchically-ordered nanostructures with complex morphology. Based on the preparation processes, two-step self-assembly can be classified into two typical types, namely, two-step self-assembly with two discontinuous processes and two-step self-assembly completed in one-pot solutions with two continuous processes. Compared to the conventional one-step self-assembly, the two-step self-assembly approach allows the combination of multiple synthetic techniques and the realization of complex nanostructures with hierarchically-ordered multiscale structures. Moreover, this approach also allows the self-assembly of heterostructures or hybrid nanomaterials in a cost-effective way. It is expected that widespread application of two-step self-assembly will give us a new way to fabricate multifunctional nanostructures with deliberately designed architectures. The concept of two-step self-assembly can also be extended to syntheses including more than two chemical/physical reaction steps (multiple-step self-assembly).
Resumo:
Purpose Road policing is a key method used to improve driver compliance with road laws. However, we have a very limited understanding of the perceptions of young drivers regarding police enforcement of road laws. This paper addresses this gap. Design/Methodology/Approach Within this study 238 young drivers from Queensland, Australia, aged 17-24 years (M = 18, SD = 1.54), with a provisional (intermediate) driver’s licence completed an online survey regarding their perceptions of police enforcement and their driver thrill seeking tendencies. This study considered whether these factors influenced self-reported transient (e.g., travelling speed) and fixed (e.g., blood alcohol concentration) road violations by the young drivers. Findings The results indicate that being detected by police for a traffic offence, and the frequency with which they display P-plates on their vehicle to indicate their licence status, are associated with both self-reported transient and fixed rule violations. Licence type, police avoidance behaviours and driver thrill seeking affected transient rule violations only, while perceptions of police enforcement affected fixed rule violations only. Practical implications This study suggests that police enforcement of young driver violations of traffic laws may not be as effective as expected and that we need to improve the way in which police enforce road laws for young novice drivers. Originality/value: This paper identifies that perceptions of police enforcement by young drivers does not influence all types of road offences.
Resumo:
With the increasing adoption of wireless technology, it is reasonable to expect an increase in file demand for supporting both real-time multimedia and high rate reliable data services. Next generation wireless systems employ Orthogonal Frequency Division Multiplexing (OFDM) physical layer owing, to the high data rate transmissions that are possible without increase in bandwidth. Towards improving file performance of these systems, we look at the design of resource allocation algorithms at medium-access layer, and their impact on higher layers. While TCP-based clastic traffic needs reliable transport, UDP-based real-time applications have stringent delay and rate requirements. The MAC algorithms while catering to the heterogeneous service needs of these higher layers, tradeoff between maximizing the system capacity and providing fairness among users. The novelly of this work is the proposal of various channel-aware resource allocation algorithms at the MAC layer. which call result in significant performance gains in an OFDM based wireless system.
Resumo:
An analytical investigation of the transverse shear wave mode tuning with a resonator mass (packing mass) on a Lead Zirconium Titanate (PZT) crystal bonded together with a host plate and its equivalent electric circuit parameters are presented. The energy transfer into the structure for this type of wave modes are much higher in this new design. The novelty of the approach here is the tuning of a single wave mode in the thickness direction using a resonator mass. First, a one-dimensional constitutive model assuming the strain induced only in the thickness direction is considered. As the input voltage is applied to the PZT crystal in the thickness direction, the transverse normal stress distribution induced into the plate is assumed to have parabolic distribution, which is presumed as a function of the geometries of the PZT crystal, packing mass, substrate and the wave penetration depth of the generated wave. For the PZT crystal, the harmonic wave guide solution is assumed for the mechanical displacement and electric fields, while for the packing mass, the former is solved using the boundary conditions. The electromechanical characteristics in terms of the stress transfer, mechanical impedance, electrical displacement, velocity and electric field are analyzed. The analytical solutions for the aforementioned entities are presented on the basis of varying the thickness of the PZT crystal and the packing mass. The results show that for a 25% increase in the thickness of the PZT crystal, there is ~38% decrease in the first resonant frequency, while for the same change in the thickness of the packing mass, the decrease in the resonant frequency is observed as ~35%. Most importantly the tuning of the generated wave can be accomplished with the packing mass at lower frequencies easily. To the end, an equivalent electric circuit, for tuning the transverse shear wave mode is analyzed.