935 resultados para Surface sampel analysis
Resumo:
A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.
Resumo:
This paper is devoted to a consideration of the following problem: A spherical mass of fluid of density varrho1, viscosity μ1 and external radius R is surrounded by a fluid of density varrho2 and viscosity μ2.The fluids are immiscible and incompressible. The interface is accelerated radially by g1: to study the effect of viscosity and surface tension on the stability of the interface. By analyzing the problem in spherical harmonics the mathematical problem is reduced to one of solution of the characteristic determinant equation. The particular case of a cavity bubble, where the viscosity μ1 of the fluid inside the bubble is negligible in comparison with the viscosity μ2 of the fluid outside the bubble, is considered in some detail. It is shown that viscosity has a stabilizing role on the interface; and when g1 > T(n − 1) (n + 2)/R2(varrho2 − varrho1) the stabilizing role of both viscosity and surface tension is more pronounced than would result when either of them is taken individually.
Resumo:
Investigation on laminar free convection heat transfer from vertical cylinders and wires having a surface temperature variation of the form TW - T∞ = M emx are presented. As in Part I for power law surface temperature variation, the axisymmetric boundary layer equations of mass, momentum and energy are transformed to more convenient forms and solved numerically. The second approximation refines the results of the first upto a maximum of only 2%. Analysis of the results indicates that cylinders can be classified into the same three categories as in Part I, namely, short cylinders, long cylinders, and wires, heat transfer and fluid flow correlations being developed for each case.
Resumo:
Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.
Resumo:
In the present study, results of reliability analyses of four selected rehabilitated earth dam sections, i.e., Chang, Tapar, Rudramata, and Kaswati, under pseudostatic loading conditions, are presented. Using the response surface methodology, in combination with first order reliability method and numerical analysis, the reliability index (beta) values are obtained and results are interpreted in conjunction with conventional factor of safety values. The influence of considering variability in the input soil shear strength parameters, horizontal seismic coefficient (alpha(h)), and location of reservoir full level on the stability assessment of the earth dam sections is discussed in the probabilistic framework. A comparison of results with those obtained from other method of reliability analysis, viz., Monte Carlo simulations combined with limit equilibrium approach, provided a basis for discussing the stability of earth dams in probabilistic terms, and the results of the analysis suggest that the considered earth dam sections are reliable and are expected to perform satisfactorily.
Resumo:
A numerical solution of the unsteady boundary layer equations under similarity assumptions is obtained. The solution represents the three-dimensional unsteady fluid motion caused by the time-dependent stretching of a flat boundary. It has been shown that a self-similar solution exists when either the rate of stretching is decreasing with time or it is constant. Three different numerical techniques are applied and a comparison is made among them as well as with earlier results. Analysis is made for various situations like deceleration in stretching of the boundary, mass transfer at the surface, saddle and nodal point flows, and the effect of a magnetic field. Both the constant temperature and constant heat flux conditions at the wall have been studied.
Resumo:
Detailed investigation of the charge density distribution in concomitant polymorphs of 3-acetylcoumarin in terms of experimental and theoretical densities shows significant differences in the intermolecular features when analyzed based on the topological properties via the quantum theory of atoms in molecules. The two forms, triclinic and monoclinic (Form A and Form B), pack in the crystal lattice via weak C-H---O and C-H---pi interactions. Form A results in a head-to-head molecular stack, while Form B generates a head-to-tail stack. Form A crystallizes in PI (Z' = 2) and Form B crystallizes in P2(1)/n (Z = 1). The electron density maps of the polymorphs demonstrate the differences in the nature of the charge density distribution in general. The charges derived from experimental and theoretical analysis show significant differences with respect to the polymorphic forms. The molecular dipole moments differ significantly for the two forms. The lattice energies evaluated at the HF and DFT (B3LYP) methods with 6-31G** basis set for the two forms clearly suggest that Form A is the thermodynamically stable form as compared to Form B. Mapping of electrostatic potential over the molecular surface shows dominant variations in the electronegative region, which bring out the differences between the two forms.
Resumo:
Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.
Resumo:
Stability analysis is carried out considering free lateral vibrations of simply supported composite skew plates that are subjected to both direct and shear in-plane forces. An oblique stress component representation is used, consistent with the skew-geometry of the plate. A double series, expressed in Chebyshev polynomials, is used here as the assumed deflection surface and Ritz method of solution is employed. Numerical results for different combinations of side ratios, skew angle, and in-plane loadings that act individually or in combination are obtained. In this method, the in-plane load parameter is varied until the fundamental frequency goes to zero. The value of the in-plane load then corresponds to a critical buckling load. Plots of frequency parameter versus in-plane loading are given for a few typical cases. Details of crossings and quasi degeneracies of these curves are presented.
Resumo:
The coupling of surface acoustic waves propagating in two separated piezoelectric media is studied using the perturbation theory of Auld. The results of the analysis are applied to two configurations using Bi12GeO20 and CdS crystals. It is found that the loss due to coupling is about 7 dB at 50 MHz in the cases of (111)-cut, [110]-prop. Bi12GeO20 and Y-cut, 60°-X prop. CdS combination. On étudie le couplage des ondes acoustiques de surface se propageant sur deux milieux piezo-eléctriques par la théorie de perturbation de Auld. Les resultats d'analyse sont appliqué's aux deux configurations des cristanx Bi12GeO20 et CdS. On trouve que la perte par couplage est environ de 7 dB a 50 MHz dans le cas de combination de (111)-coupe, [110]-prop. Bi12GeO20 et Y-coupe, 60°-X prop. CdS.
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The unsteady two-dimensional laminar mixed convection flow in the stagnation region of a vertical surface has been studied where the buoyancy forces are due to both the temperature and concentration gradients. The unsteadiness in the flow and temperature fields is caused by the time-dependent free stream velocity. Both arbitrary wall temperature and concentration, and arbitrary surface heat and mass flux variations have been considered. The Navier-Stokes equations, the energy equation and the concentration equation, which are coupled nonlinear partial differential equations with three independent variables, have been reduced to a set of nonlinear ordinary differential equations. The analysis has also been done using boundary layer approximations and the difference between the solutions has been discussed. The governing ordinary differential equations for buoyancy assisting and buoyancy opposing regions have been solved numerically using a shooting method. The skin friction, heat transfer and mass transfer coefficients increase with the buoyancy parameter. However, the skin friction coefficient increases with the parameter lambda, which represents the unsteadiness in the free stream velocity, but the heat and mass transfer coefficients decrease. In the case of buoyancy opposed flow, the solution does not exist beyond a certain critical value of the buoyancy parameter. Also, for a certain range of the buoyancy parameter dual solutions exist.
Resumo:
A key step in the triacylglycerol (TAG) biosynthetic pathway is the final acylation of diacylglycerol (DAG) by DAG acyltransferase. In silico analysis has revealed that the DCR (defective in cuticular ridges) (At5g23940) gene has a typical HX4D acyltransferase motif at the N-terminal end and a lipid binding motif VX(2)GF at the middle of the sequence. To understand the biochemical function, the gene was overexpressed in Escherichia coli, and the purified recombinant protein was found to acylate DAG specifically in an acyl-CoA-dependent manner. Overexpression of At5g23940 in a Saccharomyces cerevisiae quadruple mutant deficient in DAG acyltransferases resulted in TAG accumulation. At5g23940 rescued the growth of this quadruple mutant in the oleate-containing medium, whereas empty vector control did not. Lipid particles were localized in the cytosol of At5g23940-transformed quadruple mutant cells, as observed by oil red O staining. There was an incorporation of 16-hydroxyhexadecanoic acid into TAG in At5g23940-transformed cells of quadruple mutant. Here we report a soluble acyl-CoA-dependent DAG acyltransferase from Arabidopsis thaliana. Taken together, these data suggest that a broad specific DAG acyltransferase may be involved in the cutin as well as in the TAG biosynthesis by supplying hydroxy fatty acid.