957 resultados para Surface reaction mechanism
Resumo:
Current-potential relationships are derived for porous electrode systems following a homogeneous model and whenadsorbed intermediates participate in the electrode reaction. Limiting Tafel slopes were deduced and compared with thecorresponding behavior on planar electrode systems. The theoretical results showed doubling of Tafel slopes when theslow-step is a charge-transfer reaction and a nonlogarithmic current-voltage behavior when the slow-step is a chemical reaction.Comparison of the experimental results with theory for the case of oxygen reduction on carbon surfaces in alkalinemedia indicates that a slow chemical reaction following the initial charge-transfer reaction to be the likely rate-controllingstep. Theoretical relationships are utilized to determine the exchange current density and the surface coverage by the adsorbedintermediates during the course of oxygen reduction from alkaline solutions on "carbon." Tafel slope measurementson planar and porous electrodes for the same reaction are suggested as one of the diagnostic criteria for elucidatingthe mechanistic pathways of electrochemical reactions.
Resumo:
X.p.s. studies on the adsorption of oxygen on a barium-covered Pb surface have shown the presence of two distinct types of oxygen species: oxidic, O2–, and the peroxo-like O2–2(ads), and the surface has been identified as a composite of PbO and BaPbO3. On a barium pre-covered surface, the sticking probability of oxygen on Pb is increased. The O2–(ads) species preferentially reacts with HCl forming PbCl2(ads)via proton abstraction, whereas O2–2(ads) is not reactive with HCl vapour. On the Pb surface, the PbCl2 overlayer reacts with excess HCl, forming a volatile compound believed to be Pb(ClHCl)2, while in the presence of coadsorbed barium, the stability of PbCl2 is increased and the activation energy for the reaction: PbCl2(ads)+ 2HCl(g) Pb(ClHCl)2(g) is increased. Stronger intermetallic interaction is suggested to be the reason for higher PbCl2 stability.
Surface modifications in single crystal surfaces of YBa2Cu3O7-delta upon high energy ion irradiation
Resumo:
Atomic force microscopy investigations on swift heavy ion (200 MeV An) irradiated surfaces of a high T-c single crystal YBa2Cu3O7-delta are presented. Results obtained revealed an ion-induced erosion/sputtering clearly confirming our earlier observation on grain boundary dominated thin films. Apart from sputtering, notable effects were seen with many defect structures like dikes/hillocks surrounded by craters, dikes, holes, pearl like structures and ripple formation of sub-micron undulations, all in one crystal. Results are discussed in the light of co-operative phenomena of material re-distribution mechanism related to mass transfer and crater formations.
Resumo:
We demonstrate the activity of Ce0.78Sn0.2Pt0.02O2-delta, a new catalyst, towards water-gas shift (WGS) reaction. Over 99.5% CO conversion to H-2 is observed at 300 +/- 25 degrees C. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H-2. Temperature programmed reduction of the catalyst in hydrogen (H-2-TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt-0 oxidation state with oxygen storage capacity (OSC) of 3500 mu mol g(-1) at 80 degrees C. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O-2 shows 100% conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The temperature (T) and electric field-to-gas pressure (E/P) dependences of the rate coefficientk for the reaction SF 6 � +SOF4rarrSOF 5 � +SF5 have been measured. ForT<270>k approaches a constant of 2.1×10�9 cm3/s, and for 433>T>270 K,k decreases withT according tok (cm3/s)=0.124 exp [�3.3 lnT(K)]. ForE/Pk has a constant value of about 2.5×10�10 cm3/s, and for 130 V/cm·torr>E/P>60 V/cm·torr, the rate is approximately given byk (cm3/s)sim7.0×10�10 exp (�0.022E/P). The measured rate coefficient is used to estimate the influence of this reaction on SOF4 production from negative, point-plane, glow-type corona discharges in gas mixtures containing SF6 and at least trace amounts of O2 and H2O. A chemical kinetics model of the ion-drift region in the discharge gap is used to fit experimental data on SOF4 yields assuming that the SF 6 � +SOF4 reaction is the predominant SOF4 loss mechanism. It is found that the contribution of this reaction to SOF4 destruction falls considerably below the estimated maximum effect assuming that SF 6 � is the predominant charge carrier which reacts only with SOF4. The results of this analysis suggest that SF 6 � is efficiently deactivated by other reactions, and the influence of SF 6 � +SOF4 on SOF4 production is not necessarily more significant than that of other slower secondary processes such as gas-phase hydrolysis
Resumo:
Three new transition metal complexes using 2-pyrimidineamidoxime (pmadH(2)) as multidentate chelating and/or bridging ligand have been synthesized and characterized. The ligand pmadH(2) has two potential bridging functional groups mu-O and mu-(N-O)] and consequently shows several coordination modes. While a polymeric 1D Cu-II complex Cu(pmadH(2))(2)(NO3)](NO3) (1) was obtained upon treatment of Cu(NO3)(2)center dot 3H(2)O with pmadH(2) at room temperature in the absence of base, a high temperature reaction in the presence of base yielded a tetranuclear Cu-II-complex Cu-4(pmad)(2)(pmadH)(2)(NO3)](NO3)(H2O) (2). One of the Cu-II centers is in a square pyramidal environment while the other three are in a square planar geometry. Reaction of the same ligand with an equimolar mixture of both Cu(NO3)(2)center dot 3H(2)O and NiCl2 center dot 6H(2)O yielded a tetranuclear heterometallic (Cu2Ni2II)-Ni-II complex Cu2Ni2(pmad)(2)(pmadH)(2)Cl-2]center dot H2O (3) containing both square planar (Ni-II) and square pyramidal (Cu-II) metal centers. Complexes 1-3 represent the first examples of polynuclear metal complexes of 2-pyrimidineamidoxime. The analysis of variable temperature magnetic susceptibility data of 2 reveals that both ferromagnetic and antiferromagnetic interactions exist in this complex (J(1) = +10.7 cm(-1) and J(2) = -2.7 cm(-1) with g = 2.1) leading to a resultant ferromagnetic behavior. Complex 3 shows expected antiferromagnetic interaction between two Cu-II centers through -N-O- bridging pathway with J(1) = -3.4 cm(-1) and g = 2.08. DFT calculations have been used to corroborate the magnetic results.
Resumo:
Well uniform microspheres of phase pure Covellite were synthesized through a simple hydrothermal approach using poly vinyl pyrrolidone (PVP) as surfactant. The micro-spheres were constituted of numerous self-organized knitted nano-ribbons of similar to 30 nm thickness. The effect of conc. PVP in the hydrothermal precursor solution on the product morphology was investigated. Based on the out-coming product micro-architecture a growth mechanism was proposed which emphasized bubbled nucleation inside the hydrothermal reactor. In a comparative study on linear optical properties, enhancement of luminescent intensity was observed for nano-ribbon clung microspheres rather than that of agglomerates of distorted particles, which may be attributed to better crystallinity as well as reduced surface defects and ionic vacancies for ribbon-like nano-structures.
Resumo:
The mechanism of action of ribonuclease (RNase) T1 is still a matter of considerable debate as the results of x-ray, 2-D nmr and site-directed mutagenesis studies disagree regarding the role of the catalytically important residues. Hence computer modelling studies were carried out by energy minimisation of the complexes of RNase T1 and some of its mutants (His40Ala, His40Lys, and Glu58Ala) with the substrate guanyl cytosine (GpC), and of native RNase T1 with the reaction intermediate guanosine 2',3'-cyclic phosphate (G greater than p). The puckering of the guanosine ribose moiety in the minimum energy conformer of the RNase T1-GpC (substrate) complex was found to be O4'-endo and not C3'-endo as in the RNase T1-3'-guanylic acid (inhibitor/product) complex. A possible scheme for the mechanism of action of RNase T1 has been proposed on the basis of the arrangement of the catalytically important amino acid residues His40, Glu58, Arg77, and His92 around the guanosine ribose and the phosphate moiety in the RNase T1-GpC and RNase T1-G greater than p complexes. In this scheme, Glu58 serves as the general base group and His92 as the general acid group in the transphosphorylation step. His40 may be essential for stabilising the negatively charged phosphate moiety in the enzyme-transition state complex.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
The nucleation and growth mechanisms during high temperature oxidation of liquid Al-3% Mg and Al-3% Mg-3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.
Resumo:
Reaction of 6-Image -butyl-1-bromomethyl-2-(2-tetrahydropyranyloxy)-naphthalene2c with tetrachlorocatechol (TCC) in acetone in presence of K2CO3 gave diastereomers 6c and 7c. A mechanism (Scheme-1) invoking the base induced cleavage of the pyranyl ether 2 to 1,2-naphthoquinone-1-methide 8 as the first step has been postulated. The cleavage of the pyranyl ether linkage in 2 to give dimers 4 and 5 of 1,2-naphthoquinone-1-methide has been demonstrated with different bases. 1,2-Naphthoquinone-1-methide 8, thus generated, undergoes Michael addition with TCC followed by elimination of chloride ions to give a diketone, which further undergoes aldolisation with acetone to give diastereomers 6 and 7. Michael reaction of 8, generated Image from pyranyl ethers 2a-c, with tetrabromocatechol (TBC) under similar-reaction conditions gave the expected monobromo compounds 6h, 6i, 6k, 7n, 7n and 7q. The last step in the proposed mechanism, Image ., aldolisation has also been demonstrated using different ketonic solvents. Thus, reaction of 2a-c with TCC/TBC in diethyl ketone/methyl ethyl ketone under similar reaction conditions gave the expected compounds 6 and 7.
Resumo:
A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps: direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme.The binding of retinol-binding protein to the receptor is saturable and reverible. The interaction shows a Kd value of 2.1 · 10−10 M. The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testoterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifically induced by testoterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome.
Resumo:
Dendrite Pd with corrugated surfaces, obtained by a novel AC technique, exhibits an exceptionally high catalytic activity for the oxidation of formic acid because of the presence of a high density of surface steps. The formation of twinned dendrites leads to a predominance of exposed 111 facets with a high density of surface steps as evident from high resolution electron microscopy investigations. These surface sites provide active sites for the absorption of the formic acid molecules, thereby enhancing the reaction rate. Control experiments by varying the time of deposition reveal the formation of partially grown dendrites at shorter times indicating that the dendrites were formed by growth rather than particle attachment. Our deposition method opens up interesting possibilities to produce artisotropic nanostructures with corrugated surfaces by exploiting the perturbations involved in the growth process.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.
Resumo:
In order to depict the mechanism of coalescence in fibrous bed coalescers, a model coalescer was fabricated. Both water/oil and oil/water dispersions were run through this model coalescer to check for coalescence on PTFE and glass surfaces. The equilibrium contact angle and the dynamic contact angle of the dispersed drops were measured on these surfaces in the presence of the continuous phase. Coalescence was monitored using a microscope. Based on these observations a mechanism of coalescence in the model coalescer is proposed. Different modes of coalescence are correlated to the equilibrium contact angle and the dynamic contact angle. Deposition of dirt on the coalescing surface is observed to result in change of wettability, leading to redispersion of the already coalesced dispersed phase into larger droplets.