942 resultados para Subspace Filter Diagonalization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho surge no âmbito da área Electromedicina, uma componente da Engenharia Electrotécnica cada vez mais influente e em permanente desenvolvimento, existindo nela uma constante inovação e tentativa de desenvolvimento e aplicação de novas tecnologias. Este projecto possui como principal objectivo o estudo aprofundado das aplicações da técnica SVD (Singular Value Decomposition), uma poderosa ferramenta matemática que permite a manipulação de sinais através da decomposição de matrizes, ao caso específico do sinal eléctrico obtido através de um electrocardiograma (ECG). Serão discriminados os princípios da operação do sistema eléctrico cardíaco, as principais componentes do sinal ECG (a onda P, o complexo QRS e a onda T) e os fundamentos da técnica SVD. A última fase deste trabalho consistirá na aplicação, em ambiente Matlab, da técnica SVD a sinais ECG concretos, com enfase na sua filtragem, para efeitos de remoção de ruído. De modo verificar as suas vantagens e desvantagens face a outras técnicas, os resultados da filtragem por SVD serão comparados com aqueles obtidos, em condições similares, através da aplicação de um filtro FIR de coeficientes estáticos e de um filtro adaptativo iterativo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method of rubella antigen production by treatment with sodium desoxycholate for use in enzyme immunoassay (IMT-ELISA) is presented. When this assay was compared with a commercial test (Enzygnost-Rubella, Behring), in the study of 108 sera and 118 filter paper blood samples, 96.9% (219/226) overall agreement and correlation coefficient of 0.90 between absorbances were observed. Seven samples showed discordant results, negative by the commercial kit and positive by our test. Four of those 7 samples were available, being 3 positive by HI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A seroepidemiologic survey was carried out in schoolchildren from public schools of the Niterói municipality, state of Rio de Janeiro, Brazil, after a period of sequential epidemics by dengue virus type 1 and 2 (DEN-1 and DEN-2). 450 blood samples were obtained by fingertip puncture and collected on filter paper discs. The hemagglutination inhibition (HAI) test was carried out using DEN-1 and DEN-2 antigens. HAI titres were demonstrated in 66% (297/450) of the sera and the geometric means of the titres were 1/182 and 1/71 for DEN-1 and DEN-2, respectively. Secondary infections were observed in 61% (181/297) of positive cases. Among these, 75% (135/181) were under fifteen years old. No dengue haemorrhagic fever (DHF) was reported in these children. Asymptomatic or oligosymptomatic infections were detected in 56% of the studied population. The absolute and relative frequencies of positive tests by age group and sex did not evidence statistically significant difference. The number of individuals infected probably produced a immunologic barrier responsible for the non occurrence of dengue epidemic in the latter years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prevalence of Strongyloides stercoralis infection in three areas of Brazil was surveyed by a recently developed faecal culture method (an agar plate culture). The Strongyloides infection was confirmed in 11.3% of 432 subjects examined. The diagnostic efficacy of the agar plate culture was as high as 93.9% compared to only 28.5% and 26.5% by the Harada-Mori filter paper culture and faecal concentration methods, when faecal samples were examined simultaneously by these three methods. Among the 49 positive samples, about 60% were confirmed to be positive only by the agar plate culture. These results indicate that the agar plate culture is a sensitive new tool for the correct diagnosis of chronic Strongyloides infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single and practical method to slain Malassezia furfur and Corynebacterium minutissimum in lesions' scales is described. The scales are collected by pressing small pieces of scotch tape (about 4 cm lenght and 2 cm width) onto the lesions and following withdrawl the furfuraceous scales will remain on the glue side. These pieces are then immersed for some minutes in lactophenol-cotton blue stain. Following absorption of the stain the scales are washed in current water to remove the excess of blue stain, dried with filter paper, dehydrated via passage in two bottles containing absolute alcohol and then placed in xylene in a centrifugation tube. The xylene dissolves the scotch tape glue and the scales fall free in the tube. After centrifugation and decantation the scales concentrated on the bottom of the tube are collected with a platinum-loop, placed in Canada balsam on a microscopy slide and closed with a cover slip. The preparations are then ready to be submitted to microscopic examination. Other stains may also be used instead of lactophenol-cotton blue. This method is simple, easily performed, and offers good conditions to study these fungi as well as being useful for the diagnosis of the diseases that they cause.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of already published and unpublished seroepidemiological surveys for toxoplasmosis, carried out in Chile in 1982-1994, is reviewed, expanded and analyzed. The surveys included 76,317 apparently healthy individuals of different ages (0.57% of the country's total population), from 309 urban and rural-periurban localities. Urban groups were integrated by blood donors, delivering mothers and middle grade schoolchildren, while rural-periurban individuals corresponded to unselected family groups. Blood samples were collected in filter paper. The presence of antibodies to Toxoplasma gondii was determined by the indirect hemagglutination test (IHAT), titers > 16 were considered positive. The test resulted positive in 28,124 (36.9%) of the surveyed people. Two hundred and six (0.3%) individuals presented IHAT titers > 1000, probably corresponding to acute or reactivated infections. A progressive increase of positive IHAT from northern to southern regions of the country was noted, phenomenom probably related to geographical conditions and to a higher production and consumption of different types of meat in the latter regions. It is postulated that ingestion of T. gondii cysts by humans is epidemiologically as important as ingestion of oocysts. The results presented stress the epidemiological importance of toxoplasmosis in humans, and warn about eventual implications in immunocompromised patients and in transplacental transmission, organ transplants and transfusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We estimated the proportion of seropositivity for infection with Trypanosoma cruzi (Chagas’ disease) in a sample of the rural population of the Province of Nasca, Department of Ica, southwestern Peru. Although Triatoma infestans, the only vector species identified in the Department of Ica, is often found in domestic environments, data of the extent of human infection with T. cruzi are scant. This study comprised 446 houses, known to be infested with triatomines, distributed in 19 rural localities. While visiting those houses we collected filter paper bloodspots from 864 occupants (of both sexes, aged one year or over). By means of the indirect fluorescent antibody test (IFAT), we detected anti-T. cruzi IgG antibodies in samples from 178 individuals (20.6%). Seropositivity was significantly more frequent in females (23.8%) than in males (17.5%). Among the 410 individuals in the 1- to 10-year-old age group (47.5% of the population sample), 85 (20.7%) were found seropositive, which is indicative of an early acquisition of the infection. Within this group no significant differences in seropositivity were associated with sex

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented at Faculty of Sciences and Technology of the New University of Lisbon to attain the Master degree in Electrical and Computer Science Engineering

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diagnostic potential of circulating IgM and IgA antibodies against Schistosoma mansoni gut-associated antigens detected by the immunofluorescence test (IFT) on adult worm paraffin sections was evaluated comparatively to the fecal parasitological method, for epidemiological purposes in low endemic areas for schistosomiasis. Blood samples were collected on filter paper from two groups of schoolchildren living in two different localities of the municipality of Itariri (São Paulo, Brazil) with different histories and prevalences of schistosomiasis. The parasitological and serological data were compared to those obtained for another group of schoolchildren from a non-endemic area for schistosomiasis. The results showed poor sensitivity of the parasitological method in detecting individuals with low worm burden and indicate the potential of the serological method as an important tool to be incorporated into schistosomiasis control and vigilance programs for determining the real situation of schistosomiasis in low endemic areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was carried out in order to obtain base-line data concerning the epidemiology of American Visceral Leishmaniasis and Chagas’ Disease in an indigenous population with whom the government is starting a dwelling improvement programme. Information was collected from 242 dwellings (1,440 people), by means of house to house interviews about socio-economic and environmental factors associated with Leishmania chagasi and Trypanosoma cruzi transmission risk. A leishmanin skin test was applied to 385 people and 454 blood samples were collected on filter paper in order to detect L. chagasi antibodies by ELISA and IFAT and T. cruzi antibodies by ELISA. T. cruzi seroprevalence was 8.7% by ELISA, L. chagasi was 4.6% and 5.1% by IFAT and ELISA, respectively. ELISA sensitivity and specificity for L. chagasi antibodies were 57% and 97.5% respectively, as compared to the IFAT. Leishmanin skin test positivity was 19%. L. chagasi infection prevalence, being defined as a positive result in the three-immunodiagnostic tests, was 17.1%. Additionally, 2.7% of the population studied was positive to both L. chagasi and T. cruzi, showing a possible cross-reaction. L. chagasi and T. cruzi seropositivity increased with age, while no association with gender was observed. Age (p<0.007), number of inhabitants (p<0.05), floor material (p<0.03) and recognition of vector (p<0.01) were associated with T. cruzi infection, whilst age ( p<0.007) and dwelling improvement (p<0.02) were associated with L. chagasi infection. It is necessary to evaluate the long-term impact of the dwelling improvement programme on these parasitic infections in this community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A serosurvey of varicella has been carried out in children attending the public school network of São Paulo city, Brazil, from 1992 to 1994. This study was performed in order to establish the age related prevalence of antibodies against varicella-zoster virus (VZV) and its age specific transmission dynamics pattern in these children. Among 2500 schools in the city of São Paulo public network, 304 were randomly selected; 7 children of a given age (ranging from 1 to 15 years) were randomly selected in each school, and blood samples were obtained by fingerprick into filter paper. Blood eluates were analyzed for the presence of antibodies to VZV by ELISA. Proportion of seropositivity were calculated for each age group. Samples consisted of 1768 individuals in 1992, 1758 in 1993, and 1817 in 1994, resulting in 5343 eluates. A high proportion of seropositive children from 1 to 3 years of age was observed, ascending until 10 years of age and reaching a plateau around 90% afterwards. VZV transmission in this community was similar along the three years of the study. In children attending public schools in the city of São Paulo, contact with VZV occurs in early childhood. If immunization against VZV is considered it should be introduced as soon as possible.