966 resultados para Subgrid-scale Modelling
Resumo:
In spite of the significant amount of scientific work in Wireless Sensor Networks (WSNs), there is a clear lack of effective, feasible and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster abstract outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON relies on a hierarchical network architecture together with integrated middleware and command&control mechanisms. It has been designed to use standard commercially– available technologies, while maintaining as much flexibility as possible to meet specific applications’ requirements. The EMMON WSN architecture has been validated through extensive simulation and experimental evaluation, including through a 300+ node test-bed, the largest WSN test-bed in Europe to date
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
OBJETIVO: Estimar a confiabilidade teste-reteste dos itens do Resource Generator scale para avaliação de capital social no Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil).MÉTODOS: A escala de capital social foi aplicada em subamostra de 281 participantes dos seis Centros de Investigação do ELSA, em duas oportunidades, com intervalo de sete a 14 dias. O instrumento é constituído por 31 itens que representam situações concretas para avaliar o acesso a diferentes tipos de recursos, além de avaliar a fonte dos recursos disponíveis (familiares, amigos ou conhecidos). A análise estatística foi realizada por meio de estatísticas kappa (k) e kappa ajustado pela prevalência (ka).RESULTADOS: Os recursos sociais investigados foram encontrados com grande frequência (acima de 50%). Em relação à presença ou ausência dos recursos, as estimativas de confiabilidade ajustadas pela prevalência (ka) variaram de 0,54 a 0,97. No que se refere à fonte de recurso, essas estimativas variaram de ka = 0,45 (alguém que tenha bons contatos com a mídia) a ka = 0,86 (alguém que se formou no Ensino Médio).CONCLUSÕES: A escala apresentou níveis adequados de confiabilidade, que variaram de acordo com o tipo de recurso.
Resumo:
We use the term Cyber-Physical Systems to refer to large-scale distributed sensor systems. Locating the geographic coordinates of objects of interest is an important problemin such systems. We present a new distributed approach to localize objects and events of interest in time complexity independent of number of nodes.
Resumo:
OBJECTIVE To analyze evidence of the validity and reliability of a Brazilian Portuguese version of the Quality of Care Scale from the perspective of people with physical and intellectual disabilities.METHODS There were 162 people with physical disabilities and 156 with intellectual disabilities from Porto Alegre and metropolitan region, who participated in the study in 2008. Classical psychometrics was used to independently analyze the two samples. Hypotheses for evidence of criterion validity (concurrent type) were tested with the Mann-Whitney test for non-normal distributions. Principal components analysis was used to explore factorial models. Evidence of reliability was calculated with Cronbach alpha for the scales and subscales. Test-retest reliability was analyzed for individuals with intellectual disabilities through intra-class correlation coefficient and the Willcoxon test.RESULTS The principal components in the group with physical disabilities replicated the original model presented as a solution to the international project data. Evidence of discriminant validity and test-retest reliability was found.CONCLUSIONS The transcultural factor model found within the international sample project seems appropriate for the samples investigated in this study, especially the physical disabilities group. Depression, pain, satisfaction with life and disability may play a mediating role in the evaluation of quality of care. Additional research is needed to add to evidence of the validity of the instruments.
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
OBJECTIVE To propose a short version of the Brazilian Food Insecurity Scale. METHODS Two samples were used to test the results obtained in the analyses in two distinct scenarios. One of the studies was composed of 230 low income families from Pelotas, RS, Southern Brazil, and the other was composed of 15,575 women, whose data were obtained from the 2006 National Survey on Demography and Health. Two models were tested, the first containing seven questions, and the second, the five questions that were considered the most relevant ones in the concordance analysis. The models were compared to the Brazilian Food Insecurity Scale, and the sensitivity, specificity and accuracy parameters were calculated, as well as the kappa agreement test. RESULTS Comparing the prevalence of food insecurity between the Brazilian Food Insecurity Scale and the two models, the differences were around 2 percentage points. In the sensitivity analysis, the short version of seven questions obtained 97.8% and 99.5% in the Pelotas sample and in the National Survey on Demography and Health sample, respectively, while specificity was 100% in both studies. The five-question model showed similar results (sensitivity of 95.7% and 99.5% in the Pelotas sample and in the National Survey on Demography and Health sample, respectively). In the Pelotas sample, the kappa test of the seven-question version totaled 97.0% and that of the five-question version, 95.0%. In the National Survey on Demography and Health sample, the two models presented a 99.0% kappa. CONCLUSIONS We suggest that the model with five questions should be used as the short version of the Brazilian Food Insecurity Scale, as its results were similar to the original scale with a lower number of questions. This version needs to be administered to other populations in Brazil in order to allow for the adequate assessment of the validity parameters.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.