902 resultados para Structural Design
Resumo:
A new Ultra-High Vacuum (UHV) reflectance spectrometer was successfully designed, making use of a Janis Industries ST-400 sample cryostat, IR Labs bolometer, and Briiker IFS 66 v/S spectrometer. Two of the noteworthy features include an in situ gold evaporator and internal reference path, both of which allow for the experiment to progress with a completely undisturbed sample position. As tested, the system was designed to operate between 4.2 K and 325 K over a frequency range of 60 - 670 cm~^. This frequency range can easily be extended through the addition of appUcable detectors. Tests were performed on SrTiOa, a highly ionic incipient ferroelectric insulator with a well known reflectance. The presence and temperatmre dependence of the lowest frequency "soft" mode were measured, as was the presence of the other two infrared modes. During the structural phase transition from cubic to tetragonal perovskite, the splitting of the second phonon mode was also observed. All of the collected data indicate good agreement with previous measurements, with a minor discrepency between the actual and recorded sample temperatures.
Resumo:
Work in the area of molecule-based magnetic and/or conducting materials is presented in two projects. The first project describes the use of 4,4’-bipyridine as a scaffold for the preparation of a new family of tetracarboxamide ligands. Four new ligands I-III have been prepared and characterized and the coordination chemistry of these ligands is presented. This project was then extended to exploit 4,4’-bipyridine as a covalent linker between two N3O2 macrocyles. In this respect, three dimeric macrocycles have been prepared IV-VI. Substitution of the labile axial ligands of the Co(II) complex IV by [Fe(CN)6]4- afforded the self-assembly of the 1-D polymeric chain {[Co(N3O2)H2O]2Fe(CN)6}n•3H2O that has been structurally and magnetically characterized. Magnetic studies on the Fe(II) complexes V and VI indicate that they undergo incomplete spin crossover transitions in the solid state. Strategies for the preparation of chiral spin crossover N3O2 macrocycles are discussed and the synthesis of the novel chiral Fe(II) macrocyclic complex VII is reported. Magnetic susceptibility and Mössbauer studies reveal that this complex undergoes a gradual spin crossover in the solid state with no thermal hysteresis. Variable temperature X-ray diffraction studies on single crystals of VII reveal interesting structural changes in the coordination geometry of the macrocycle accompanying its SCO transition. The second project reports the synthesis and characterization of a new family of tetrathiafulvalene derivatives VIII – XII, where a heterocyclic chelating ligand is appended to a TTF donor via an imine linker. The coordination chemistries of these ligands with M(hfac)2.H2O (M( = Co, Ni, Mn, Cu) have been explored and the structural and magnetic properties of these complexes are described.
Resumo:
This thesis describes two different approaches for the preparation of polynuclear clusters with interesting structural, magnetic and optical properties. Firstly, exploiting p-tert-butylcalix[4]arene (TBC4) macrocycles together with selected Ln(III) ions for the assembly of emissive single molecule magnets, and secondly the preparation and coordination of a chiral mpmH ligand with selected 3d transition metal ions, working towards the discovery of chiral polynuclear clusters. In Project 1, the coordination chemistry of the TBC4 macrocycle together with Dy(III) and Tb(III) afforded two Ln6[TBC4]2 complexes that have been structurally, magnetically and optically characterized. X-ray diffraction studies reveal that both complexes contain an octahedral core of Ln6 ions capped by two fully deprotonated TBC4 macrocycles. Although the unit cells of the two complexes are very similar, the coordination geometries of their Ln(III) ions are subtly different. Variable temperature ac magnetic susceptibility studies reveal that both complexes display single molecule magnet (SMM) behaviour in zero dc field and the energy barriers and associated pre-exponential factors for each relaxation process have been determined. Low temperature solid state photoluminescence studies reveal that both complexes are emissive; however, the f-f transitions within the Dy6 complex were masked by broad emissions from the TBC4 ligand. In contrast, the Tb(III) complex displayed green emission with the spectrum comprising four sharp bands corresponding to 5D4 → 7FJ transitions (where J = 3, 4, 5 and 6), highlighting that energy transfer from the TBC4 macrocycle to the Tb(III) ion is more effective than to Dy. Examples of zero field Tb(III) SMMs are scarce in the chemical literature and the Tb6[TBC4]2 complex represents the first example of a Tb(III) dual property SMM assembled from a p-tert-butylcalix[4]arene macrocycle with two magnetically derived energy barriers, Ueff of 79 and 63 K. In Project 2, the coordination of both enantiomers of the chiral ligand, α-methyl-2-pyridinemethanol (mpmH) to Ni(II) and Co(II) afforded three polynuclear clusters that have been structurally and magnetically characterized. The first complex, a Ni4 cluster of stoichiometry [Ni4(O2CCMe3)4(mpm)4]·H2O crystallizes in a distorted cubane topology that is well known in Ni(II) cluster chemistry. The final two Co(II) complexes crystallize as a linear mixed valence trimer with stoichiometry [Co3(mpm)6]·(ClO4)2, and a Co4 mixed valence complex [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2], whose structural topology resembles that of a defective double cubane. All three complexes crystallize in chiral space groups and circular dichroism experiments further confirm that the chirality of the ligand has been transferred to the respective coordination complex. Magnetic susceptibility studies reveal that for all three complexes, there are competing ferro- and antiferromagnetic exchange interactions. The [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2] complex represents the first example of a chiral mixed valence Co4 cluster with a defective double cubane topology.
Resumo:
Les logiciels sont en constante évolution, nécessitant une maintenance et un développement continus. Ils subissent des changements tout au long de leur vie, que ce soit pendant l'ajout de nouvelles fonctionnalités ou la correction de bogues dans le code. Lorsque ces logiciels évoluent, leurs architectures ont tendance à se dégrader avec le temps et deviennent moins adaptables aux nouvelles spécifications des utilisateurs. Elles deviennent plus complexes et plus difficiles à maintenir. Dans certains cas, les développeurs préfèrent refaire la conception de ces architectures à partir du zéro plutôt que de prolonger la durée de leurs vies, ce qui engendre une augmentation importante des coûts de développement et de maintenance. Par conséquent, les développeurs doivent comprendre les facteurs qui conduisent à la dégradation des architectures, pour prendre des mesures proactives qui facilitent les futurs changements et ralentissent leur dégradation. La dégradation des architectures se produit lorsque des développeurs qui ne comprennent pas la conception originale du logiciel apportent des changements au logiciel. D'une part, faire des changements sans comprendre leurs impacts peut conduire à l'introduction de bogues et à la retraite prématurée du logiciel. D'autre part, les développeurs qui manquent de connaissances et–ou d'expérience dans la résolution d'un problème de conception peuvent introduire des défauts de conception. Ces défauts ont pour conséquence de rendre les logiciels plus difficiles à maintenir et évoluer. Par conséquent, les développeurs ont besoin de mécanismes pour comprendre l'impact d'un changement sur le reste du logiciel et d'outils pour détecter les défauts de conception afin de les corriger. Dans le cadre de cette thèse, nous proposons trois principales contributions. La première contribution concerne l'évaluation de la dégradation des architectures logicielles. Cette évaluation consiste à utiliser une technique d’appariement de diagrammes, tels que les diagrammes de classes, pour identifier les changements structurels entre plusieurs versions d'une architecture logicielle. Cette étape nécessite l'identification des renommages de classes. Par conséquent, la première étape de notre approche consiste à identifier les renommages de classes durant l'évolution de l'architecture logicielle. Ensuite, la deuxième étape consiste à faire l'appariement de plusieurs versions d'une architecture pour identifier ses parties stables et celles qui sont en dégradation. Nous proposons des algorithmes de bit-vecteur et de clustering pour analyser la correspondance entre plusieurs versions d'une architecture. La troisième étape consiste à mesurer la dégradation de l'architecture durant l'évolution du logiciel. Nous proposons un ensemble de m´etriques sur les parties stables du logiciel, pour évaluer cette dégradation. La deuxième contribution est liée à l'analyse de l'impact des changements dans un logiciel. Dans ce contexte, nous présentons une nouvelle métaphore inspirée de la séismologie pour identifier l'impact des changements. Notre approche considère un changement à une classe comme un tremblement de terre qui se propage dans le logiciel à travers une longue chaîne de classes intermédiaires. Notre approche combine l'analyse de dépendances structurelles des classes et l'analyse de leur historique (les relations de co-changement) afin de mesurer l'ampleur de la propagation du changement dans le logiciel, i.e., comment un changement se propage à partir de la classe modifiée è d'autres classes du logiciel. La troisième contribution concerne la détection des défauts de conception. Nous proposons une métaphore inspirée du système immunitaire naturel. Comme toute créature vivante, la conception de systèmes est exposée aux maladies, qui sont des défauts de conception. Les approches de détection sont des mécanismes de défense pour les conception des systèmes. Un système immunitaire naturel peut détecter des pathogènes similaires avec une bonne précision. Cette bonne précision a inspiré une famille d'algorithmes de classification, appelés systèmes immunitaires artificiels (AIS), que nous utilisions pour détecter les défauts de conception. Les différentes contributions ont été évaluées sur des logiciels libres orientés objets et les résultats obtenus nous permettent de formuler les conclusions suivantes: • Les métriques Tunnel Triplets Metric (TTM) et Common Triplets Metric (CTM), fournissent aux développeurs de bons indices sur la dégradation de l'architecture. La d´ecroissance de TTM indique que la conception originale de l'architecture s’est dégradée. La stabilité de TTM indique la stabilité de la conception originale, ce qui signifie que le système est adapté aux nouvelles spécifications des utilisateurs. • La séismologie est une métaphore intéressante pour l'analyse de l'impact des changements. En effet, les changements se propagent dans les systèmes comme les tremblements de terre. L'impact d'un changement est plus important autour de la classe qui change et diminue progressivement avec la distance à cette classe. Notre approche aide les développeurs à identifier l'impact d'un changement. • Le système immunitaire est une métaphore intéressante pour la détection des défauts de conception. Les résultats des expériences ont montré que la précision et le rappel de notre approche sont comparables ou supérieurs à ceux des approches existantes.
Resumo:
Ce document s’inscrit dans la foulée des préoccupations mondiales sur le devenir des villes au XXIe siècle. Il questionne les façons de faire qui contribuent à un développement de qualité des cadres de vie des citoyens. Les processus d’idéation de type atelier et charrette sont retenus en regard de leurs valeurs mobilisatrices et consensuelles qui répondent aux principes du développement durable. La problématique posée concerne l’adaptation de leur structure de fonctionnement au contexte local dans lequel il s’applique et de leur performance à induire les résultats escomptés. Une analyse comparative de trois études de cas révèle que le processus d’idéation se singularise en fonction des modalités de communication nécessaires pour progresser dans la démarche de planification des projets et conjointement à ceci, confirme que leur performance réside en leur capacité de rassembler l’ensemble des acteurs du projet en un même lieu. À l’issue de notre étude, nous fournissons un procédurier préliminaire pour diriger la mise en œuvre de processus d’idéation localement.
Resumo:
This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films
Resumo:
The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.
Resumo:
With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.
Resumo:
This paper presents the research and development of a 3-legged micro Parallel Kinematic Manipulator (PKM) for positioning in micro-machining and assembly operations. The structural characteristics associated with parallel manipulators are evaluated and the PKMs with translational and rotational movements are identified. Based on these identifications, a hybrid 3-UPU (Universal Joint-Prismatic Joint-Universal Joint) parallel manipulator is designed and fabricated. The principles of the operation and modeling of this micro PKM is largely similar to a normal size Stewart Platform (SP). A modular design methodology is introduced for the construction of this micro PKM. Calibration results of this hybrid 3-UPU PKM are discussed in this paper.
Resumo:
Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study.
Resumo:
This lab follows the lectures 'System Design: http://www.edshare.soton.ac.uk/6280/ http://www.edshare.soton.ac.uk/9653/ and http://www.edshare.soton.ac.uk/9713/ Students use Visual Paradigm for UML to build Class models through project examples: Aircraft Manufacturing Company, Library, Plant Nursery.
Resumo:
La present tesi està centrada en l'ús de la Teoria de Semblança Quàntica per a calcular descriptors moleculars. Aquests descriptors s'utilitzen com a paràmetres estructurals per a derivar correlacions entre l'estructura i la funció o activitat experimental per a un conjunt de compostos. Els estudis de Relacions Quantitatives Estructura-Activitat són d'especial interès per al disseny racional de molècules assistit per ordinador i, en particular, per al disseny de fàrmacs. Aquesta memòria consta de quatre parts diferenciades. En els dos primers blocs es revisen els fonaments de la teoria de semblança quàntica, així com l'aproximació topològica basada en la teoria de grafs. Ambdues teories es fan servir per a calcular els descriptors moleculars. En el segon bloc, s'ha de remarcar la programació i implementació de programari per a calcular els anomenats índexs topològics de semblança quàntica. La tercera secció detalla les bases de les Relacions Quantitatives Estructura-Activitat i, finalment, el darrer apartat recull els resultats d'aplicació obtinguts per a diferents sistemes biològics.
Resumo:
Background and purpose: Molecular mechanisms underlying the links between dietary intake of flavonoids and reduced cardiovascular disease risk are only partially understood. Key events in the pathogenesis of cardiovascular disease, particularly thrombosis, are inhibited by these polyphenolic compounds via mechanisms such as inhibition of platelet activation and associated signal transduction, attenuation of generation of reactive oxygen species, enhancement of nitric oxide production and binding to thromboxane A2 receptors. In vivo, effects of flavonoids are mediated by their metabolites, but the effects and modes of action of these compounds are not well-characterized. A good understanding of flavonoid structure–activity relationships with regard to platelet function is also lacking. Experimental approach: Inhibitory potencies of structurally distinct flavonoids (quercetin, apigenin and catechin) and plasma metabolites (tamarixetin, quercetin-3′-sulphate and quercetin-3-glucuronide) for collagen-stimulated platelet aggregation and 5-hydroxytryptamine secretion were measured in human platelets. Tyrosine phosphorylation of total protein, Syk and PLCγ2 (immunoprecipitation and Western blot analyses), and Fyn kinase activity were also measured in platelets. Internalization of flavonoids and metabolites in a megakaryocytic cell line (MEG-01 cells) was studied by fluorescence confocal microscopy. Key results: The inhibitory mechanisms of these compounds included blocking Fyn kinase activity and the tyrosine phosphorylation of Syk and PLCγ2 following internalization. Principal functional groups attributed to potent inhibition were a planar, C-4 carbonyl substituted and C-3 hydroxylated C ring in addition to a B ring catechol moiety. Conclusions and implications: The structure–activity relationship for flavonoids on platelet function presented here may be exploited to design selective inhibitors of cell signalling.
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
This paper introduces scientific research findings and accounts of skilled design judgement to: (i) develop an interdisciplinary account of what affects our identification of letters when reading; (ii) analyse the relationship between the approaches of psychologists and designers to explaining how we identify letters; (iii) propose ways in which collaboration may work to make psychological research more relevant to typographic practice. The topics reviewed are addressed within each discipline and cover the contribution of letters and words to reading; letter features; essential or structural forms; uniformity within font design; and letter spacing. Analysis of the literature identifies possible means of reconciling different perspectives, points out some anomalies in interpretation of findings, and proposes how designers may contribute to research planning and dissemination.