953 resultados para Steam-turbines.
Resumo:
Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed generators is improving the system efficiency compared to fixed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. An integral sliding surface is used, because the integral term avoids the use of the acceleration signal, which reduces the high frequency components in the sliding variable. The proposed design also uses the vector oriented control theory in order to simplify the generator dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and parameter uncertainties by using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, that usually appear in real systems.
Resumo:
POWERENG 2011
Resumo:
(EuroPES 2009)
Resumo:
EuroPES 2009
Resumo:
本文采用实验方法,在一个流化床反应器中研究160~750℃下水蒸气的存在对HCl脱除效率(RE)的影响.实验结果表明:在低温区,水蒸气对RE的影响不明显;380℃时水蒸气的存在抑制反应进行;580℃和750℃时,脱除效率先下降,当水蒸气含量达到15%时,又呈现上升趋势.对于水蒸气含量为5%、10%和15%情况下,580℃的脱氯效率最高.最后通过对暴露的反应物表面积和HCl气体穿越产物层扩散过程的分析解释实验得到的规律.
Resumo:
[ES]Diseño de una instalación de cogeneración basada en un motor de combustible gas natural para una empresa de tratamientos térmicos y superficiales. Para satisfacer las necesidades energéticas de la planta, la potencia eléctrica la suministrará un alternador conectado al motor y, a su vez, la entalpía de los humos de escape del motor se aprovechará para la producción de vapor de agua, necesario para la actividad industrial de la empresa. Por otro lado, el calor que es necesario disipar de dicho motor se recuperará para el calentamiento de agua de red, con la finalidad de limpiar la taladrina de las piezas tratadas.
Resumo:
Politically the Colorado river is an interstate as well as an international stream. Physically the basin divides itself distinctly into three sections. The upper section from head waters to the mouth of San Juan comprises about 40 percent of the total of the basin and affords about 87 percent of the total runoff, or an average of about 15 000 000 acre feet per annum. High mountains and cold weather are found in this section. The middle section from the mouth of San Juan to the mouth of the Williams comprises about 35 percent of the total area of the basin and supplies about 7 percent of the annual runoff. Narrow canyons and mild weather prevail in this section. The lower third of the basin is composed of mainly hot arid plains of low altitude. It comprises some 25 percent of the total area of the basin and furnishes about 6 percent of the average annual runoff.
The proposed Diamond Creek reservoir is located in the middle section and is wholly within the boundary of Arizona. The site is at the mouth of Diamond Creek and is only 16 m. from Beach Spring, a station on the Santa Fe railroad. It is solely a power project with a limited storage capacity. The dam which creats the reservoir is of the gravity type to be constructed across the river. The walls and foundation are of granite. For a dam of 290 feet in height, the back water will be about 25 m. up the river.
The power house will be placed right below the dam perpendicular to the axis of the river. It is entirely a concrete structure. The power installation would consist of eighteen 37 500 H.P. vertical, variable head turbines, directly connected to 28 000 kwa. 110 000 v. 3 phase, 60 cycle generators with necessary switching and auxiliary apparatus. Each unit is to be fed by a separate penstock wholly embedded into the masonry.
Concerning the power market, the main electric transmission lines would extend to Prescott, Phoenix, Mesa, Florence etc. The mining regions of the mountains of Arizona would be the most adequate market. The demand of power in the above named places might not be large at present. It will, from the observation of the writer, rapidly increase with the wonderful advancement of all kinds of industrial development.
All these things being comparatively feasible, there is one difficult problem: that is the silt. At the Diamond Creek dam site the average annual silt discharge is about 82 650 acre feet. The geographical conditions, however, will not permit silt deposites right in the reservoir. So this design will be made under the assumption given in Section 4.
The silt condition and the change of lower course of the Colorado are much like those of the Yellow River in China. But one thing is different. On the Colorado most of the canyon walls are of granite, while those on the Yellow are of alluvial loess: so it is very hard, if not impossible, to get a favorable dam site on the lower part. As a visitor to this country, I should like to see the full development of the Colorado: but how about THE YELLOW!
Resumo:
O objetivo deste trabalho foi criar uma metodologia de validação e revalidação dos processos de esterilização por calor úmido em autoclaves horizontais, destacando os pontos críticos do processo e concentrando esforços onde são realmente necessários. Foram realizados estudos de distribuição térmica, de penetração de calor e de desafio microbiológico na validação da autoclave STERIS FINNAQUA 6912. Com o objetivo de avaliar o impacto de uma mudança e compreender a relação entre os fatores e suas interações para o processo de esterilização, foi utilizado o planejamento fatorial 23 dos fatores densidade da carga (quantidade de itens), embalagem do produto e localização na câmara interna. Os estudos de distribuição térmica confirmaram a distribuição homogênea de calor na câmara interna durante o tempo de exposição a 121C. As temperaturas variaram entre 120,35C e 120,92C com desvio padrão máximo de 0,12C. Os estudos de penetração de calor confirmaram exposições equivalentes a 121C por 24 minutos em todos os itens da carga (F0 > 24 minutos). Em todos os estudos para cargas secas, os índices de capacidade do processo (Cpk) foram maiores que 1,33. Os ensaios de desafio microbiológico garantiram níveis de esterilidade (S.A.L.) maiores que 12 reduções logarítmicas em relação aos indicadores biológicos Geobacillus stearothermophilus. Não foi detectada a presença de endosporos sobreviventes nos 132 indicadores biológicos utilizados nos quatro ciclos desafiados. Com base no planejamento experimental verificou-se que, para o nível de significância de 95% , as mudanças nos fatores posição, embalagem e quantidade da carga não são significativas para o processo de esterilização, em autoclave com remoção forçada de ar. Já para o nível de significância de 90%, a interação Posição x Embalagem apresentou significância estatística no processo de esterilização com valor P de 0,080
Resumo:
An experimental investigation was made of forced convection film boiling of subcooled water around a sphere at atmospheric pressure. The water was sufficiently cool that the vapor condensed before leaving the film with the result that no vapor bubbles left the film. The experimental runs were made using inductively heated spheres at temperatures above 740°C. and using inlet water temperatures between 15°C. and 27°C. The spheres used had diameters of 1/2 inch, 9/16 inch, and 3/8 inch and were supported by the liquid flow. Reynolds numbers between 60 and 700 were used.
Analysis of the collected non-condensables indicated that oxygen and nitrogen dissolved in the water accumulated within the vapor film and that hetrogeneous chemical reactions occurred at the sphere surface. An iron-steam reaction resulted in more than 20% by volume hydrogen in the film at wall temperatures above 900°C. At temperatures near 1100°C. more than 80% by volume of the film was composed of hydrogen. It was found that gold plating of the sphere could eliminate this reaction.
Material and energy balances were used to derive equations which may be used to predict the overall average heat transfer coefficients for subcooled film boiling around a sphere. These equations include the effect of dissolved gases in the water. Equations also were derived which may be used to predict the composition of the film for cases in which an equilibrium exists between the dissolved gases and the gases in the film.
The derived equations were compared to the experimental results. It was found that a correlation existed between the Nusselt number for heat transfer from the vapor-liquid interface into the liquid and the Reynolds number, liquid Prandtl number product. In addition, it was found that the percentage of dissolved oxygen removed during the film boiling could be predicted to within 10%.
Resumo:
221 p.
Resumo:
[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.
Resumo:
[ES]El objetivo de este Trabajo Fin de Grado consiste en estudiar el proceso desarrollado en la planta de incineración de residuos sólidos urbanos de Zabalgarbi (Bizkaia). La planta consiste en un ciclo combinado basado en una turbina de gas de 43 MW y una turbina de vapor de 56,5 MW. La importancia de su diseño recae en la adaptación de la tecnología de ciclo combinado de gas a la tecnología propia de una planta de valorización energética de residuos municipales. Es decir, se trata de un diseño innovador, del que surge un nuevo proceso industrial que permite dar solución a la problemática generada por los residuos producidos a la vez que se genera energía eléctrica. Gracias a este diseño, se consigue una mejora cualitativa y cuantitativa del rendimiento de la planta, ya que se obtiene energía eléctrica en dos etapas, además de un mejor aprovechamiento de los recursos. La tecnología utilizada para la incineración es el horno-caldera de parrilla deslizante. En este trabajo se analizarán los procesos integrados en la planta y se realizará el estudio energético de los equipos más significativos. Una vez realizada esta parte, se considerarán ciertas mejoras a incorporar en la instalación. Además, se desarrollará la metodología seguida para la realización del estudio así como la planificación y el presupuesto.
Resumo:
O potencial eólico do Brasil, de vento firme e com viabilidade econômica de aproveitamento, é de 143 GW. Isso equivale ao dobro de toda a capacidade da geração já instalada no país. No Brasil, a energia eólica tem uma sazonalidade complementar à energia hidrelétrica, porque os períodos de melhor condição de vento coincidem com os de menor capacidade dos reservatórios. O projeto desenvolvido neste trabalho nasceu de uma chamada pública do FINEP, e sob os auspícios do recém criado CEPER. Ao projeto foi incorporado um caráter investigativo, de contribuição científica original, resultando em um produto de tecnologia inovadora para aerogeradores de baixa potência. Dentre os objetivos do projeto, destacamos a avaliação experimental de turbinas eólicas de 5000 W de potência. Mais especificamente, dentro do objetivo geral deste projeto estão incluídas análise estrutural, análise aerodinâmica e análise de viabilidade de novos materiais a serem empregados. Para cada uma das diferentes áreas de conhecimento que compõem o projeto, será adotada a metodologia mais adequada. Para a Análise aerodinâmica foi realizada uma simulação numérica preliminar seguida de ensaios experimentais em túnel de vento. A descrição dos procedimentos adotados é apresentada no Capítulo 3. O Capítulo 4 é dedicado aos testes elétricos. Nesta etapa, foi desenvolvido um banco de testes para obtenção das características específicas das máquinas-base, como curvas de potência, rendimento elétrico, análise e perdas mecânicas e elétricas, e aquecimento. Este capítulo termina com a análise crítica dos valores obtidos. Foram realizados testes de campo de todo o conjunto montado. Atualmente, o aerogerador de 5kW encontra-se em operação, instrumentado e equipado com sistema de aquisição de dados para consolidação dos testes de confiabilidade. Os testes de campo estão ocorrendo na cidade de Campos, RJ, e abrangeram as seguintes dimensões de análise; testes de eficiência para determinação da curva de potência, níveis de ruído e atuação de dispositivos de segurança. Os resultados esperados pelo projeto foram atingidos, consolidando o projeto de um aerogerador de 5000W.
Resumo:
[ES]La industria aeronáutica se ha convertido en los últimos tiempos en uno de los sectores más innovadores. Una de las características de este sector es que exige una amplia gama de materiales con propiedades únicas como las superaleaciones en base Ni MARM247 y C1023, que son materiales nuevos que parecen tener un comportamiento ideal para su uso en turbinas. El objetivo de este proyecto es obtener en un mismo documento todos los datos posibles, tanto teóricos como empíricos de estos materiales. El proyecto se puede dividir en dos partes: investigación de la mayor cantidad de información y realizar algunos ensayos con muestras.
Resumo:
This work is aimed at optimizing the wind turbine rotor speed setpoint algorithm. Several intelligent adjustment strategies have been investigated in order to improve a reward function that takes into account the power captured from the wind and the turbine speed error. After different approaches including Reinforcement Learning, the best results were obtained using a Particle Swarm Optimization (PSO)-based wind turbine speed setpoint algorithm. A reward improvement of up to 10.67% has been achieved using PSO compared to a constant approach and 0.48% compared to a conventional approach. We conclude that the pitch angle is the most adequate input variable for the turbine speed setpoint algorithm compared to others such as rotor speed, or rotor angular acceleration.