967 resultados para Sports Sciences
Resumo:
We examined the effects of progressive resistance training (PRT) and supplementation with calcium-vitamin D(3) fortified milk on markers of systemic inflammation, and the relationship between inflammation and changes in muscle mass, size and strength. Healthy men aged 50-79 years (n = 180) participated in this 18-month randomized controlled trial that comprised a factorial 2 x 2 design. Participants were randomized to (1) PRT + fortified milk supplement, (2) PRT, (3) fortified milk supplement, or (4) a control group. Participants assigned to PRT trained 3 days per week, while those in the supplement groups consumed 400 ml day(-1) of milk containing 1,000 mg calcium plus 800 IU vitamin D(3). We collected venous blood samples at baseline, 12 and 18 months to measure the serum concentrations of IL-6, TNF-alpha and hs-CRP. There were no exercise x supplement interactions, but serum IL-6 was 29% lower (95% CI, -62, 0) in the PRT group compared with the control group after 12 months. Conversely, IL-6 was 31% higher (95% CI, -2, 65) in the supplement group compared with the non-supplemented groups after 12 and 18 months. These between-group differences did not persist after adjusting for changes in fat mass. In the PRT group, mid-tibia muscle cross-sectional area increased less in men with higher pre-training inflammation compared with those men with lower inflammation (net difference similar to 2.5%, p < 0.05). In conclusion, serum IL-6 concentration decreased following PRT, whereas it increased after supplementation with fortified milk concomitant with changes in fat mass. Furthermore, low-grade inflammation at baseline restricted muscle hypertrophy following PRT.
Resumo:
Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.
Resumo:
Ultraendurance exercise training places large energy demands on athletes and causes a high turnover of vitamins through sweat losses, metabolism, and the musculoskeletal repair process. Ultraendurance athletes may not consume sufficient quantities or quality of food in their diet to meet these needs. Consequently, they may use oral vitamin and mineral supplements to maintain their health and performance. We assessed the vitamin and mineral intake of ultraendurance athletes in their regular diet, in addition to oral vitamin and mineral supplements. Thirty-seven ultraendurance triathletes (24 men and 13 women) completed a 7-day nutrition diary including a questionnaire to determine nutrition adequacy and supplement intake. Compared with dietary reference intakes for the general population, both male and female triathletes met or exceeded all except for vitamin D. In addition, female athletes consumed slightly less than the recommended daily intake for folate and potassium; however, the difference was trivial. Over 60% of the athletes reported using vitamin supplements, of which vitamin C (97.5%), vitamin E (78.3%), and multivitamins (52.2%) were the most commonly used supplements. Almost half (47.8%) the athletes who used supplements did so to prevent or reduce cold symptoms. Only 1 athlete used supplements on formal medical advice. Vitamin C and E supplementation was common in ultraendurance triathletes, despite no evidence of dietary deficiency in these 2 vitamins.
Resumo:
Precise protein quantification and recommendation is essential in clinical dietetics, particularly in the management of individuals with chronic kidney disease, malnutrition, burns, wounds, pressure ulcers, and those in active sports. The Expedited 10g Protein Counter (EP-10) was developed to simplify the quantification of dietary protein for assessment and recommendation of protein intake.1 Instead of using separate protein exchanges for different food groups to quantify the dietary protein intake of an individual, every exchange in the EP-10 accounts for an exchange each of 3g non-protein-rich food and 7g protein-rich food (Table 1). The EP-10 was recently validated and published in the Journal of Renal Nutrition recently.1 This study demonstrated that using the EP-10 for dietary protein intake quantification had clinically acceptable validity and reliability when compared with the conventional 7g protein exchange while requiring less time.2 In clinical practice, the use of efficient, accurate and practical methods to facilitate assessment and treatment plans is important. The EP-10 can be easily implemented in the nutrition assessment and recommendation for a patient in the clinical setting. This patient education tool was adapted from materials printed in the Journal of Renal Nutrition.1 The tool may be used as presented or adapted to assist patients to achieve their recommended daily protein intake.
Resumo:
Purpose The primary objective of this study was to examine the effect of exercise on subjective sleep quality in heart failure patients. Methods This study used a randomised, controlled trial design with blinded end-point analysis. Participants were randomly assigned to a 12-week programme of education and self-management support (control) or to the same programme with the addition of a tailored physical activity programme designed and supervised by an exercise specialist (intervention). The intervention consisted of 1 hour of aerobic and resistance exercise twice a week. Participants included 108 patients referred to three hospital heart failure services in Queensland, Australia. Results Patients who participated in supervised exercise classes showed significant improvement in subjective sleep quality, sleep latency, sleep disturbance and global sleep quality scores after 12 weeks of supervised hospital based exercise. Secondary analysis showed that improvements in sleep quality were correlated with improvements in geriatric depression score (p=0.00) and exercise performance (p=0.03). General linear models were used to examine whether the changes in sleep quality following intervention occurred independently of changes in depression, exercise performance and weight. Separate models adjusting for each covariate were performed. Results suggest that exercise significantly improved sleep quality independent of changes in depression, exercise performance and weight. Conclusion This study supports the hypothesis that a 12 week program of aerobic and resistance exercise improves subjective sleep quality in patients with heart failure. This is the first randomised controlled trial to examine the role of exercise in the improvement of sleep quality for patients with this disease. While this study establishes exercise as a therapy for poor sleep quality, further research is needed to investigate exercise as a treatment for other parameters of sleep in this population. Study investigators plan to undertake a more in-depth examination within the next 12 months
Resumo:
Does exercise promote weight loss? One of the key problems with studies assessing the efficacy of exercise as a method of weight management and obesityis that mean data are presented and the individual variability in response is overlooked. Recent data have highlighted the need to demonstrate and characterise the individual variability in response to exercise. Do people who exercise compensate for the increase in energy expenditure via compensatory increases in hunger and food intake? The authors address the physiological, psychological and behavioural factors potentially involved in the relationship between exercise and appetite, and identify the research questions that remain unanswered. A negative consequence of the phenomena of individual variability and compensatory responses has been the focus on those who lose little weight in response to exercise; this has been used unreasonably as evidence to suggest that exercise is a futile method of controlling weight and managing obesity. Most of the evidence suggests that exercise is useful for improving body composition and health. For example, when exercise-induced mean weight loss is <1.0 kg, significant improvements in aerobic capacity (+6.3 ml/kg/min), systolic (−6.00 mm Hg) and diastolic (−3.9 mm Hg) blood pressure, waist circumference (−3.7 cm) and positive mood still occur. However, people will vary in their responses to exercise; understanding and characterising this variability will help tailor weight loss strategies to suit individuals.
Resumo:
The aim of this study was to determine if athletes with a history of hamstring strain injury display lower levels of surface EMG (sEMG) activity and median power frequency in the previously injured hamstring muscle during maximal voluntary contractions. Recreational athletes were recruited, 13 with a history of unilateral hamstring strain injury and 15 without prior injury. All athletes undertook isokinetic dynamometry testing of the knee flexors and sEMG assessment of the biceps femoris long head (BF) and medial hamstrings (MH) during concentric and eccentric contractions at ± 180 and ± 600.s-1. The knee flexors on the previously injured limb were weaker at all contraction speeds compared to the uninjured limb (+1800.s-1 p = 0.0036; +600.s-1 p = 0.0013; -600.s-1 p = 0.0007; -1800.s-1 p = 0.0007) whilst sEMG activity was only lower in the BF during eccentric contractions (-600.s-1 p = 0.0025; -1800.s-1 p = 0.0003). There were no between limb differences in MH sEMG activity or median power frequency from either BF or MH in the injured group. The uninjured group showed no between limb differences in any of the tested variables. Secondary analysis comparing the between limb difference in the injured and the uninjured groups, confirmed that previously injured hamstrings were mostly weaker (+1800.s-1 p = 0.2208; +600.s-1 p = 0.0379; -600.s-1 p = 0.0312; -1800.s-1 p = 0.0110) and that deficits in sEMG were confined to the BF during eccentric contractions (-600.s-1 p = 0.0542; -1800.s-1 p = 0.0473) Previously injured hamstrings were weaker and BF sEMG activity was lower than the contralateral uninjured hamstring. This has implications for hamstring strain injury prevention and rehabilitation which should consider altered neural function following hamstring strain injury.
Resumo:
In many countries, governments and health agencies are strongly promoting physical activity as a means to prevent the accumulation of fatness that leads to weight gain and obesity. However, there is often a resistance to respond to health promotion initiatives. For example, in the UK, the Chief Medical Officer has recently reported that 71% of women and 61% of men fail to carry out even the minimal amount of physical activity recommended in the government’s guidelines. Similarly, the Food safety Agency has promoted reductions in the intake of fat, sugar and salt but with very little impact on the pattern of consumption. Why is it that recommendations to improve health are so difficult to implement, and produce the desired outcome?
Resumo:
Recent analyses of population data reveal that obesity rates continue to rise, and are projected to reach unprecedented levels over the next decade 1. Despite concerted efforts to impede obesity progression, as of today, weight loss and weight maintenance strategies remain at best partially successful endeavours. Regardless of the observation that weight loss strategies can produce significant weight loss 2 and substantial improvements of the determinants of the metabolic risk profile 3, 4, it is clear that actual weight loss tends to be lower than the anticipated weight loss, and most individuals who achieve weight loss will likely regain some weight 5 and even overshoot 6 their pre-intervention body weight. As such, an improved understanding of the factors that contribute to lower than expected weight loss, and poor weight maintenance would improve the effectiveness of weight loss interventions.
Resumo:
Background: Hamstring strain injuries are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of running. The impact of prior strain injury on myoelectrical activity of the hamstrings during tasks requiring high rates of torque development has received little attention. Purpose: To determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of myoelectrical activity during eccentric contraction, rate of torque development and impulse 30, 50 and 100ms after the onset of myoelectrical activity or torque development in the previously injured limb compared to the uninjured limb. Study design: Case-control study Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, injured limb = 312.27 ± 191.78Nm.s-1 vs. uninjured limb = 518.54 ± 172.81Nm.s-1, p=0.008; IMP, injured limb = 0.73 ± 0.30 Nm.s vs. uninjured limb = 0.97 ± 0.23 Nm.s, p=0.005) and 100ms (RTD, injured limb = 280.03 ± 131.42Nm.s-1 vs. uninjured limb = 460.54.54 ± 152.94Nm.s-1,p=0.001; IMP, injured limb = 2.15 ± 0.89 Nm.s vs. uninjured limb = 3.07 ± 0.63 Nm.s, p<0.001) after the onset of contraction. Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, normalised iEMG activity (x1000), injured limb = 26.25 ± 10.11 vs. uninjured limb 33.57 ± 8.29, p=0.009; -1800.s-1, normalised iEMG activity (x1000), injured limb = 31.16 ± 10.01 vs. uninjured limb 39.64 ± 8.36, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during slow maximal eccentric contraction compared to the contralateral uninjured limb. Lower myoelectrical activity was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings could have important implications for hamstring strain injury and re-injury. Particularly, given the importance of high levels of muscle activity to bring about specific muscular adaptations, lower levels of myoelectrical activity may limit the adaptive response to rehabilitation interventions and suggest greater attention be given to neural function of the knee flexors following hamstring strain injury.
Resumo:
Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.
Resumo:
INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.
Resumo:
Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Intermittent running has been shown to result in preferential reductions in eccentric hamstring strength, which increase the risk of sustaining a HSI. The eccentric specific nature of this decline in hamstring function implicates central mechanisms, as peripheral fatigue mechanisms tend to impact upon both concentric and eccentric contractions modes. However, neural function of the hamstrings, such as the median power frequency (MPF) of the surface electromyography signal has yet to be examined in the fatigued hamstring following intermittent sprint running. AIM: To determine the impact of fatigue induced by intermittent sprinting on the MPF of the medial and lateral hamstring muscles. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±180.s-1 and ±60.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused a significant reduction in eccentric knee flexor strength (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) but not concentric strength (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, MPF of the lateral hamstrings showed a significant decline eccentrically (0.86; 95% CI = 0.59 to 1.54; P=0.038) and concentrically (0.76; 95%CI = 0.66 to 0.83; P=0.039). Similar declines in MPF were also noted in the medial hamstrings eccentrically (1.54; 95% CI = 0.59 to 7.9; P=0.005) and concentrically (1.18; 95% CI = 0.44 to 6.8; P=0.040). CONCLUSION: Whilst sprint running induced fatigue led to a eccentric specific reduction in knee flexor torque, MPF was suppressed across both contraction modes. This would indicate that factors associated with the decline in MPF do not appear to explain the contraction mode-specific loss of strength after intermittent sprints. This would implicate other central mechanisms, such as declines in voluntary activation, in explaining the eccentric specific decline in strength seen following sprint running.
Resumo:
Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. PURPOSE: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed an increased level of activation following intermittent running (0.12%; 95% CI = 0.049 to 0.030; P = 0.0102). CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.