939 resultados para Spherical aggregates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed mineralogical investigations of high-Fe layer silicates from loose sediments (glauconite sands) of the Sado Ridge revealed that green aggregates found on submarine rises of the Japan Sea floor have different genesis. It was demonstrated that round dark green grains approximate micas in composition. Primary volcanic rocks presumably have undergone extensive secondary alterations and then were disintegrated. Their disintegration products (protoceladonite) filling pores were redeposited and buried in sediments for a long time. Angular green grains mainly represented by smectite also formed at lower temperatures during disintegration of altered volcanosedimentary rocks. These younger grains had no prolonged exposure. Pseudomorphs of siliceous microplankton consist of both hydromica and smectites. They are presumably authigenic products formed with participation of microorganisms or electrostatic processes (spherical shape), or their combination. The formation mechanism of minerals filling cavities in pyroclastics is not entirely clear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degradation of organic matter in slightly organic-rich (1 wt% organic carbon) Neogene calcareous turbidites of the Argo Basin at Site 765 by sulfate reduction results in pore-water phosphate, ammonium, manganese, and carbonate alkalinity maxima. Pore-water calcium and magnesium decrease in the uppermost 100 meters below seafloor (mbsf) in response to the precipitation of calcian dolomite with an average composition of Ca1.15Mg0.83Fe0.02(CO3)2. Clear, euhedral dolomite rhombs range from <1 to 40 µm in diameter and occur in trace to minor amounts (<1-2 wt%) in Pleistocene to Pliocene sediment (62-210 mbsf) The abundance of dolomite increases markedly (2-10 wt%) in Miocene sediment (210-440 mbsf). The dolomite is associated with diagenetic sepiolite and palygorskite, as well as redeposited biogenic low-Mg calcite and aragonitic benthic foraminifers. Currently, dolomite is precipitating at depth within the pore spaces of the sediment, largely as a result of aragonite dissolution. The rate of aragonite dissolution, calculated from the pore-water strontium profile, is sufficient to explain the amount of dolomite observed at Site 765. A foraminiferal aragonite precursor is further supported by the carbon and oxygen isotopic compositions of the dolomite, which are fairly close to the range of isotopic compositions observed for Miocene benthic foraminifers. Dolomite precipitation is promoted by the degradation of organic matter by sulfate-reducing bacteria because the lower pore-water sulfate concentration reduces the effect of sulfate inhibition on the dolomite reaction and because the higher carbonate alkalinity increases the degree of saturation of the pore waters with dolomite. Organic matter degradation also results in the precipitation of pyrite and trace amounts of apatite (francolite), and the release of iron and manganese to the pore water by reduction of Fe and Mn oxides. Spherical, silt-sized aggregates of microcrystalline calcian rhodochrosite occur in trace to minor amounts in Lower Cretaceous sediment from 740 to 900 mbsf at Site 765. A negative carbon isotopic composition suggests that the rhodochrosite formed early in the sulfate reduction zone, but a depleted oxygen isotopic composition suggests that the rhodochrosite may have recrystallized at deeper burial depths.