960 resultados para Space-time block code
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references (p. 29).
Resumo:
Mode of access: Internet.
Resumo:
Hitting a moving target demands that movement is both spatially and temporally accurate. Recent experiments have begun to reveal how performance of such actions depends on the spatial and temporal accuracy requirements of the task. The results suggest a simple strategy for achieving spatiotemporal accuracy using brief, high-speed movements.
Resumo:
The estimation of a concentration-dependent diffusion coefficient in a drying process is known as an inverse coefficient problem. The solution is sought wherein the space-average concentration is known as function of time (mass loss monitoring). The problem is stated as the minimization of a functional and gradient-based algorithms are used to solve it. Many numerical and experimental examples that demonstrate the effectiveness of the proposed approach are presented. Thin slab drying was carried out in an isothermal drying chamber built in our laboratory. The diffusion coefficients of fructose obtained with the present method are compared with existing literature results.
Resumo:
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.
Resumo:
Computer simulated trajectories of bulk water molecules form complex spatiotemporal structures at the picosecond time scale. This intrinsic complexity, which underlies the formation of molecular structures at longer time scales, has been quantified using a measure of statistical complexity. The method estimates the information contained in the molecular trajectory by detecting and quantifying temporal patterns present in the simulated data (velocity time series). Two types of temporal patterns are found. The first, defined by the short-time correlations corresponding to the velocity autocorrelation decay times (â‰0.1â€ps), remains asymptotically stable for time intervals longer than several tens of nanoseconds. The second is caused by previously unknown longer-time correlations (found at longer than the nanoseconds time scales) leading to a value of statistical complexity that slowly increases with time. A direct measure based on the notion of statistical complexity that describes how the trajectory explores the phase space and independent from the particular molecular signal used as the observed time series is introduced. © 2008 The American Physical Society.