953 resultados para Space vector modulation (SVM)
Resumo:
Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classifi-cation on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects' signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1:53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.
Resumo:
We studied the role of ethanol on the modulation of liver granulomata around Schistosoma mansoni eggs in mice. Albino mice, receiving 7% ethanol as the sole drinking liquid, at 60 and 90 days post-infection, presented smaller granulomata than controls did, when sacrificed at 120 days post-infection. No differences in diameters could be observed, when ethanol was given 4 months before up to 120 days after infection. The results suggested that modulation of schistosome granulomata by ethanol ingestion varies with time and duration of drug consumption.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Numerous pulmonary schistosome egg granulomas were present in mice submitted to partial portal vein ligation (Warren's model). The granulomas were characterized by cellular aggregations formed within alveolar tissue. Main cellular types were macrophages (epithelioid cells), eosinophils, plasma cells and lymphocytes. These cells were supported by scanty fibrous stroma and exhibited close membrane contact points amongst themselves, but without forming specialized adhesion apparatus. When granulomas involved arterial structures, proliferation of cndothelial and smooth muscle cells occurred and fibrosis associated with angiogenesis became more evident. Granulomas formed around mature eggs in the pulmonary alveolar tissue presented approximately the same size and morphology regardless of the time of infection, the latter being 10, 18 and 25 weeks after cercarial exposure. This persistence of morphological appearance suggests that pulmonary granulomas do not undergo immunological modulation, as is the case with the granulomas in the liver and, to a lesser extent, in the intestines. Probably, besides general immunological factors, local (stromal) factors play an important role in schistosomal granuloma modulation.
Resumo:
Lutzomyia verrucarum (Townsend, 1913) (Diptera: Psychodidae), vector natural de la verruga peruana o enfermedad de Carrión es una especie propia del Perú. Su distribución geográfica esta entre los paralelos 5º y 13º25' de latitud Sur, se encuentra en los valles Occidentales e Interandinos de los Andes. La distribución altitudinal de Lu. verrucarum en los diversos valles es variable; asi: Occidentales, desde 1100 hasta 2980 msnm e Interandinos, de 1200 a 3200 msnm. En ciertas áreas verrucógenas no hay correlación entre la presencia de Lu. verrucarum y la enfermedad de Carrión lo que suguiere la existencia de vectores secundarios.
Resumo:
Comunicação apresentada na 17.ª conferência anual da NISPACee, realizada de 14 a 16 de Maio de 2009.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Arguably, the most difficult task in text classification is to choose an appropriate set of features that allows machine learning algorithms to provide accurate classification. Most state-of-the-art techniques for this task involve careful feature engineering and a pre-processing stage, which may be too expensive in the emerging context of massive collections of electronic texts. In this paper, we propose efficient methods for text classification based on information-theoretic dissimilarity measures, which are used to define dissimilarity-based representations. These methods dispense with any feature design or engineering, by mapping texts into a feature space using universal dissimilarity measures; in this space, classical classifiers (e.g. nearest neighbor or support vector machines) can then be used. The reported experimental evaluation of the proposed methods, on sentiment polarity analysis and authorship attribution problems, reveals that it approximates, sometimes even outperforms previous state-of-the-art techniques, despite being much simpler, in the sense that they do not require any text pre-processing or feature engineering.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.
Resumo:
Master Erasmus Mundus Crossways in European Humanities
Resumo:
A malária, doença parasitária complexa que resulta da interacção entre parasita, hospedeiros humano e vector, constitui um dos principais problemas de saúde a nível mundial. À semelhança de outras doenças parasitárias e infecciosas a malária tem um papel importante na evolução, tendo já sido demonstrado o papel da variação genética humana na resistência à infecção. Após quase meio século de controlo, a malária persiste na ilha de Santiago onde, apesar da baixa endemicidade, os indivíduos apresentam geralmente manifestações moderadas, são diagnosticadas infecções abaixo do nível detectável pela microscopia e o vector se encontra muito próximo da população supostamente susceptível, desconhecendo-se a frequência dos principais polimorfismos genéticos humanos mais relacionados com a doença e a estrutura populacional do mosquito vector. Os objectivos gerais de trabalho desta tese assentam 1) no estudo dos dois clássicos factores genéticos do hospedeiro humano relacionados com a malária, nomeadamente os afectos à anemia das células falciformes, à deficiência em G6PD e a análise dum provável envolvimento da PK e 2) na análise genética das populações do mosquito vector, tentando contribuir para a compreensão da epidemiologia da doença na Ilha, e para a escolha de medidas de controlo apropriadas. Os trabalhos incidiram na detecção do alelo responsável pela hemoglobina S, de polimorfismos no gene da G6PD e da PK em indivíduos não aparentados (Infectados e não Infectados) com análise da sua provável associação com a infecção e, ainda, na genotipagem de loci microssatélites de Anopheles arabiensis com recurso a técnicas baseadas na PCR. Relativamente à anemia falciforme, a frequência dos portadores do traço (indivíduos HbAS) e do alelo HbS foi 6% e 5%, respectivamente, e para as variantes da G6PD, 0,8% para G6PDA- e 0,0% para a G6PDMed, não tendo sido encontrado associação entre os genótipos desses dois factores e a presença de infecção. No que concerne ao gene PKLR não foi encontrada uma associação clara entre os polimorfismos analisados e o estado de infecção, mas foi detectado um acentuado desequilíbrio de linkage entre os loci, apenas nos Não Infectados, o que pode significar que essa região do gene, aparentemente conservada, tenha sido seleccionada por fornecer protecção contra a infecção e/ou doença. A diversidade genética das populações de A. arabiensis em onze loci microssatélites foi moderada com valores médio de He, variando de 0,481 a 0,522 e a Rs de 4 a 5. O valor da diferenciação genética baseado em 7 loci polimórficos foi baixo (FST=0,012; p<0,001) mas significativo, variando entre 0,001 e 0,023 entre os pares de populações. Não foram detectados os alelos de resistência associados ao gene Kdr. A baixa frequência dos alelos associados à G6PD (A- e Med) tem implicações importantes nas estratégias de controlo definidas pelo Programa Nacional de Luta contra o Paludismo (PNLP), uma vez que a primaquina pode continuar a ser administrada como complemento aos regimes terapêuticos, em caso de necessidade. A população de A. arabiensis em Santiago revelou-se relativamente homogénea e com uma estrutura reduzida o que pode, por um lado, representar uma desvantagem por permitir uma provável dispersão dos genes de resistência. Por outro lado, essa relativa homogeneidade poderá representar uma vantagem para a introdução de um programa de controlo baseado na libertação de mosquitos transgénicos.
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Pain transmission at the spinal cord is modulated by descending actions that arise from supraspinal areas which collectively form the endogenous pain control system. Two key areas involved of the endogenous pain control system have a circunventricular location, namely the periaqueductal grey (PAG) and the locus coeruleus (LC). The PAG plays a crucial role in descending pain modulation as it conveys the input from higher brain centers to the spinal cord. As to the LC, it is involved in descending pain inhibition by direct noradrenergic projections to the spinal cord. In the context of neurological defects, several diseases may affect the structure and function of the brain. Hydrocephalus is a congenital or acquired disease characterized by an enlargement of the ventricles which leads to a distortion of the adjacent tissues, including the PAG and LC. Usually, patients suffering from hydrocephalus present dysfunctions in learning and memory and also motor deficits. It remains to be evaluated if lesions of the periventricular brain areas involved in pain control during hydrocephalus may affect descending pain control and, herein, affect pain responses. The studies included in the present thesis used an experimental model of hydrocephalus (the rat injected in the cisterna magna with kaolin) to study descending modulation of pain, focusing on the two circumventricular regions referred above (the PAG and the LC). In order to evaluate the effects of kaolin injection into the cisterna magna, we measured the degree of ventricular dilatation in sections encompassing the PAG by standard cytoarquitectonic stanings (thionin staining). For the LC, immunodetection of the noradrenaline-synthetizing enzyme tyrosine hydroxylase (TH) was performed, due to the noradrenergic nature of the LC neurons. In general, rats with kaolin-induced hydrocephalus presented a higher dilatation of the 4th ventricle, along with a tendency to a higher area of the PAG. Due to the validated role of detection the c-fos protooncogene as a marker of neuronal activation, we also studied neuronal activation in the several subnuclei which compose the PAG, namely the dorsomedial, dorsolateral, lateral and ventrolateral (VLPAG) parts. A decrease in the numbers of neurons immunoreactive for Fos protein (the product of activation of the c-fos protooncogene) was detected in rats injected with kaolin, whereas the remaining PAG subnuclei did not present changes in Fos-immunoreactive nuclei. Increases in the levels of TH in the LC, namely at the rostral parts of the nucleus, were detected in hydrocephalic animals. The following pain-related parameters were measured, namely 1) pain behavioural responses in a validated pain inflammatory test (the formalin test) and 2) the nociceptive activation of spinal cord neurons. A decrease in behavioral responses was detected in rats with kaolin-induced hydrocephalus was detected, namely in the second phase of the test (inflammatory phase). This is the phase of the formalin test in which the motor behaviour is less important, which is important since a semi-quantitative analysis of the motor performance of rats injected with kaolin indicates that these animals may present some motor impairments. Collectively, the results of the behavioral studies indicate that rats with kaolin-induced hydrocephalus exhibit hypoalgesia. A decrease in Fos expression was detected at the superficial dorsal layers of the spinal cord in rats with kaolin-induced hydrocephalus, further indicating that hydrocephalus decreases nociceptive responses. It remains to be ascertained if this is due to alterations in the PAG and LC in the rats with kaolin-induced hydrocephalus, which may affect descending pain modulation. It remains to be evaluated what are the mechanisms underlying the increased pain inhibition at the spinal dorsal horn in the hydrocephalus rats. Regarding the VLPAG, the decrease in neuronal activity may impair descending modulation. Since the LC has higher levels of TH in rats with kaolininduced hydrocephalus, which also appears to increase the noradrenergic innervation in the spinal dorsal horn, it is possible that an increase in the release of noradrenaline at the spinal cord accounts for pain inhibition. Our studies also determine the need to study in detail patients with hydrocephalus namely in what concerns their thresholds to pain and to perform imaging studies focused on the structure and function of pain control areas in the brain.
Resumo:
A utilização eficiente da energia é essencial para a competitividade económica de um país. Sendo a intensidade energética de Portugal elevada, onde a utilização de motores elétricos, absorve cerca de metade da energia elétrica consumida na indústria, a utilização de conversores eletrónicos de potência permite obter economias de energia. Nesta tese pretende-se controlar a velocidade e o posicionamento de um tapete rolante através da utilização de um conversor eletrónico de potência. Na fundamentação teórica são referidos os conceitos de variação da tensão e frequência, controle escalar e vetorial, modelação por largura de pulso (PWM) assim como a retificação e ondulação da tensão de um variador de velocidades. Na parte prática será utilizado um servo motor, controlado por um variador eletrónico de velocidades, para efetuar o referido projeto. É ainda objeto desta tese o estudo dos parâmetros fundamentais assim como a pesquisa dos parâmetros a utilizar para o desempenho pretendido.