922 resultados para Solar water heaters
Resumo:
Subtropical south-east Queensland’s expanding population is expected to lead to a demand for an additional 754,000 dwellings by 2031. A legacy of poor housing design, minimal building regulations, an absence of building performance evaluation and various social and market factors has lead to a high and growing penetration of, and reliance on, air conditioners to provide comfort in this relatively benign climate. This reliance impacts on policy goals to adapt to and mitigate against global warming, electricity infrastructure investment and household resilience. Based on the concept of bioclimatic design, this field study scrutinizes eight non-air conditioned homes to develop a deeper understanding of the role of contemporary passive solar architecture in the delivery of thermally comfortable and resilient homes in the subtropics. These homes were found to provide inhabitants with an acceptable level of thermal comfort (18-28oC) for 77 – 97% of the year. Family expectations and experiences of comfort, and the various design strategies utilized were compared against the measured performance outcomes. This comparison revealed issues that limited quantification and implementation of design intent and highlighted factors that constrained system optimisation.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
The purpose of this study was to determine the effects of cryotherapy, in the form of cold water immersion, on knee joint position sense. Fourteen healthy volunteers, with no previous knee injury or pre-existing clinical condition, participated in this randomized cross-over trial. The intervention consisted of a 30-min immersion, to the level of the umbilicus, in either cold (14 ± 1°C) or tepid water(28 ± 1°C). Approximately one week later, in a randomized fashion, the volunteers completed the remaining immersion. Active ipsilateral limb repositioning sense of the right knee was measured, using weight-bearing and non-weight bearing assessments, employing video-recorded 3D motion analysis. These assessments were conducted immediately before and after a cold and tepid water immersion. No significant differences were found between treatments for the absolute (P = 0.29), relative (P = 0.21) or variable error (P = 0.86). The average effect size of the outcome measures was modest (range –0.49 to 0.9) and all the associated 95% confidence intervals for these effect sizes crossed zero. These results indicate that there is no evidence of an enhanced risk of injury, following a return to sporting activity, after cold water.
Low temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells
Resumo:
The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multi-wall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultra-thin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.
Resumo:
An increase in the likelihood of navigational collisions in port waters has put focus on the collision avoidance process in port traffic safety. The most widely used on-board collision avoidance system is the automatic radar plotting aid which is a passive warning system that triggers an alert based on the pilot’s pre-defined indicators of distance and time proximities at the closest point of approaches in encounters with nearby vessels. To better help pilot in decision making in close quarter situations, collision risk should be considered as a continuous monotonic function of the proximities and risk perception should be considered probabilistically. This paper derives an ordered probit regression model to study perceived collision risks. To illustrate the procedure, the risks perceived by Singapore port pilots were obtained to calibrate the regression model. The results demonstrate that a framework based on the probabilistic risk assessment model can be used to give a better understanding of collision risk and to define a more appropriate level of evasive actions.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.
Resumo:
An anatase TiO 2 material with hierarchically structured spheres consisting of ultrathin nanosheets with 100% of the [001] facet exposed was employed to fabricate dye-sensitized solar cells (DSC s). Investigation of the electron transport and back reaction of the DSCs by electrochemical impedance spectroscopy showed that the spheres had a threefold lower electron recombination rate compared to the conventional TiO 2 nanoparticles. In contrast, the effective electron diffusion coefficient, D n, was not sensitive to the variation of the TiO 2 morphology. The TiO 2 spheres showed the same Dn as that of the nanoparticles. The influence of TiCl 4 post-treatment on the conduction band of the TiO 2 spheres and on the kinetics of electron transport and back reactions was also investigated. It was found that the TiCl 4 post-treatment caused a downward shift of the TiO 2 conduction band edge by 30 meV. Meanwhile, a fourfold increase of the effective electron lifetime of the DSC was also observed after TiCl4 treatment. The synergistic effect of the variation of the TiO 2 conduction band and the electron recombination determined the open-circuit voltage of the DSC. © 2012 Wang et al.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is expected to rise. However, due to low collision frequencies it is difficult to analyze such risk in a sound statistical manner. This study aims at examining the occurrence of traffic conflicts in order to understand the characteristics of vessels involved in navigational hazards. A binomial logit model was employed to evaluate the association of vessel attributes and the kinematic conditions with conflict severity levels. Results show a positive association for vessels of small gross tonnage, overall vessel length, vessel height and draft with conflict risk. Conflicts involving a pair of dynamic vessels sailing at low speeds also have similar effects.
Resumo:
With increasing rate of shipping traffic, the risk of collisions in busy and congested port waters is likely to rise. However, due to low collision frequencies in port waters, it is difficult to analyze such risk in a sound statistical manner. A convenient approach of investigating navigational collision risk is the application of the traffic conflict techniques, which have potential to overcome the difficulty of obtaining statistical soundness. This study aims at examining port water conflicts in order to understand the characteristics of collision risk with regard to vessels involved, conflict locations, traffic and kinematic conditions. A hierarchical binomial logit model, which considers the potential correlations between observation-units, i.e., vessels, involved in the same conflicts, is employed to evaluate the association of explanatory variables with conflict severity levels. Results show higher likelihood of serious conflicts for vessels of small gross tonnage or small overall length. The probability of serious conflict also increases at locations where vessels have more varied headings, such as traffic intersections and anchorages; becoming more critical at night time. Findings from this research should assist both navigators operating in port waters as well as port authorities overseeing navigational management.
Resumo:
Habitat fragmentation as a result of urbanisation is a growing problem for native lizard species. The Eastern Water Dragon (Physignathus lesueurii) is a social arboreal agamid lizard, native to Australia. This species represents an ideal model species to investigate the effect of urbanisation because of their prominent abundance in the urban landscape. Here we describe the isolation and characterisation of a novel set of 74 di-, tri-, and tetramicrosatellites from which 18 were selected and optimised into two multiplexes. The 18 microsatellites generated a total 148 alleles across the two populations. The number of alleles per locus varied from 2 to 18 alleles and measures of Ho and He varied from 0.395 to 0.877 and from 0.441 to 0.880, respectively. We also present primers for four novel mitochondrial DNA (mtDNA) markers. The combined length of the four mtDNA marker pairs was 2,528 bp which included 15 nucleotides changes. In comparison to threatened species, which are generally characterised by small population sizes, the Eastern Water Dragon represents an ideal model species to investigate the effect of urbanisation on their behavioural ecology and connectivity patterns among populations.
Resumo:
Soluble organic matter derived from exotic Pinus species has been shown to form stronger complexes with iron (Fe) than that derived from most native Australian species. It has also been proposed that the establishment of exotic Pinus plantations in coastal southeast Queensland may have enhanced the solubility of Fe in soils by increasing the amount of organically complexed Fe, but this remains inconclusive. In this study we test whether the concentration and speciation of Fe in soil water from Pinus plantations differs significantly from soil water from native vegetation areas. Both Fe redox speciation and the interaction between Fe and dissolved organic matter (DOM) were considered; Fe - DOM interaction was assessed using the Stockholm Humic Model. Iron concentrations (mainly Fe 2+) were greatest in the soil waters with the greatest DOM content collected from sandy podosols (Podzols), where they are largely controlled by redox potential. Iron concentrations were small in soil waters from clay and iron oxide-rich soils, in spite of similar redox potentials. This condition is related to stronger sorption on to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for electron shuttling and microbial metabolism, restricting reductive dissolution of Fe. Vegetation type had no significant influence on the concentration and speciation of iron in soil waters, although DOM from Pinus sites had greater acidic functional group site densities than DOM from native vegetation sites. This is because Fe is mainly in the ferrous form, even in samples from the relatively well-drained podosols. However, modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxic conditions. Therefore, the input of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides (ferrihydrite) and increase the flux of dissolved Fe out of the catchment. Such inputs of iron are most probably derived from podosols planted with Pinus.
Resumo:
This work focuses on the development of a stand-alone gas nanosensor node, powered by solar energy to track concentration of polluted gases such as NO2, N2O, and NH3. Gas sensor networks have been widely developed over recent years, but the rise of nanotechnology is allowing the creation of a new range of gas sensors [1] with higher performance, smaller size and an inexpensive manufacturing process. This work has created a gas nanosensor node prototype to evaluate future field performance of this new generation of sensors. The sensor node has four main parts: (i) solar cells; (ii) control electronics; (iii) gas sensor and sensor board interface [2-4]; and (iv) data transmission. The station is remotely monitored through wired (ethernet cable) or wireless connection (radio transmitter) [5, 6] in order to evaluate, in real time, the performance of the solar cells and sensor node under different weather conditions. The energy source of the node is a module of polycrystalline silicon solar cells with 410cm2 of active surface. The prototype is equipped with a Resistance-To-Period circuit [2-4] to measure the wide range of resistances (KΩ to GΩ) from the sensor in a simple and accurate way. The system shows high performance on (i) managing the energy from the solar panel, (ii) powering the system load and (iii) recharging the battery. The results show that the prototype is suitable to work with any kind of resistive gas nanosensor and provide useful data for future nanosensor networks.