807 resultados para Sliding friction
Resumo:
The country has witnessed tremendous increase in the vehicle population and increased axle loading pattern during the last decade, leaving its road network overstressed and leading to premature failure. The type of deterioration present in the pavement should be considered for determining whether it has a functional or structural deficiency, so that appropriate overlay type and design can be developed. Structural failure arises from the conditions that adversely affect the load carrying capability of the pavement structure. Inadequate thickness, cracking, distortion and disintegration cause structural deficiency. Functional deficiency arises when the pavement does not provide a smooth riding surface and comfort to the user. This can be due to poor surface friction and texture, hydro planning and splash from wheel path, rutting and excess surface distortion such as potholes, corrugation, faulting, blow up, settlement, heaves etc. Functional condition determines the level of service provided by the facility to its users at a particular time and also the Vehicle Operating Costs (VOC), thus influencing the national economy. Prediction of the pavement deterioration is helpful to assess the remaining effective service life (RSL) of the pavement structure on the basis of reduction in performance levels, and apply various alternative designs and rehabilitation strategies with a long range funding requirement for pavement preservation. In addition, they can predict the impact of treatment on the condition of the sections. The infrastructure prediction models can thus be classified into four groups, namely primary response models, structural performance models, functional performance models and damage models. The factors affecting the deterioration of the roads are very complex in nature and vary from place to place. Hence there is need to have a thorough study of the deterioration mechanism under varied climatic zones and soil conditions before arriving at a definite strategy of road improvement. Realizing the need for a detailed study involving all types of roads in the state with varying traffic and soil conditions, the present study has been attempted. This study attempts to identify the parameters that affect the performance of roads and to develop performance models suitable to Kerala conditions. A critical review of the various factors that contribute to the pavement performance has been presented based on the data collected from selected road stretches and also from five corporations of Kerala. These roads represent the urban conditions as well as National Highways, State Highways and Major District Roads in the sub urban and rural conditions. This research work is a pursuit towards a study of the road condition of Kerala with respect to varying soil, traffic and climatic conditions, periodic performance evaluation of selected roads of representative types and development of distress prediction models for roads of Kerala. In order to achieve this aim, the study is focused into 2 parts. The first part deals with the study of the pavement condition and subgrade soil properties of urban roads distributed in 5 Corporations of Kerala; namely Thiruvananthapuram, Kollam, Kochi, Thrissur and Kozhikode. From selected 44 roads, 68 homogeneous sections were studied. The data collected on the functional and structural condition of the surface include pavement distress in terms of cracks, potholes, rutting, raveling and pothole patching. The structural strength of the pavement was measured as rebound deflection using Benkelman Beam deflection studies. In order to collect the details of the pavement layers and find out the subgrade soil properties, trial pits were dug and the in-situ field density was found using the Sand Replacement Method. Laboratory investigations were carried out to find out the subgrade soil properties, soil classification, Atterberg limits, Optimum Moisture Content, Field Moisture Content and 4 days soaked CBR. The relative compaction in the field was also determined. The traffic details were also collected by conducting traffic volume count survey and axle load survey. From the data thus collected, the strength of the pavement was calculated which is a function of the layer coefficient and thickness and is represented as Structural Number (SN). This was further related to the CBR value of the soil and the Modified Structural Number (MSN) was found out. The condition of the pavement was represented in terms of the Pavement Condition Index (PCI) which is a function of the distress of the surface at the time of the investigation and calculated in the present study using deduct value method developed by U S Army Corps of Engineers. The influence of subgrade soil type and pavement condition on the relationship between MSN and rebound deflection was studied using appropriate plots for predominant types of soil and for classified value of Pavement Condition Index. The relationship will be helpful for practicing engineers to design the overlay thickness required for the pavement, without conducting the BBD test. Regression analysis using SPSS was done with various trials to find out the best fit relationship between the rebound deflection and CBR, and other soil properties for Gravel, Sand, Silt & Clay fractions. The second part of the study deals with periodic performance evaluation of selected road stretches representing National Highway (NH), State Highway (SH) and Major District Road (MDR), located in different geographical conditions and with varying traffic. 8 road sections divided into 15 homogeneous sections were selected for the study and 6 sets of continuous periodic data were collected. The periodic data collected include the functional and structural condition in terms of distress (pothole, pothole patch, cracks, rutting and raveling), skid resistance using a portable skid resistance pendulum, surface unevenness using Bump Integrator, texture depth using sand patch method and rebound deflection using Benkelman Beam. Baseline data of the study stretches were collected as one time data. Pavement history was obtained as secondary data. Pavement drainage characteristics were collected in terms of camber or cross slope using camber board (slope meter) for the carriage way and shoulders, availability of longitudinal side drain, presence of valley, terrain condition, soil moisture content, water table data, High Flood Level, rainfall data, land use and cross slope of the adjoining land. These data were used for finding out the drainage condition of the study stretches. Traffic studies were conducted, including classified volume count and axle load studies. From the field data thus collected, the progression of each parameter was plotted for all the study roads; and validated for their accuracy. Structural Number (SN) and Modified Structural Number (MSN) were calculated for the study stretches. Progression of the deflection, distress, unevenness, skid resistance and macro texture of the study roads were evaluated. Since the deterioration of the pavement is a complex phenomena contributed by all the above factors, pavement deterioration models were developed as non linear regression models, using SPSS with the periodic data collected for all the above road stretches. General models were developed for cracking progression, raveling progression, pothole progression and roughness progression using SPSS. A model for construction quality was also developed. Calibration of HDM–4 pavement deterioration models for local conditions was done using the data for Cracking, Raveling, Pothole and Roughness. Validation was done using the data collected in 2013. The application of HDM-4 to compare different maintenance and rehabilitation options were studied considering the deterioration parameters like cracking, pothole and raveling. The alternatives considered for analysis were base alternative with crack sealing and patching, overlay with 40 mm BC using ordinary bitumen, overlay with 40 mm BC using Natural Rubber Modified Bitumen and an overlay of Ultra Thin White Topping. Economic analysis of these options was done considering the Life Cycle Cost (LCC). The average speed that can be obtained by applying these options were also compared. The results were in favour of Ultra Thin White Topping over flexible pavements. Hence, Design Charts were also plotted for estimation of maximum wheel load stresses for different slab thickness under different soil conditions. The design charts showed the maximum stress for a particular slab thickness and different soil conditions incorporating different k values. These charts can be handy for a design engineer. Fuzzy rule based models developed for site specific conditions were compared with regression models developed using SPSS. The Riding Comfort Index (RCI) was calculated and correlated with unevenness to develop a relationship. Relationships were developed between Skid Number and Macro Texture of the pavement. The effort made through this research work will be helpful to highway engineers in understanding the behaviour of flexible pavements in Kerala conditions and for arriving at suitable maintenance and rehabilitation strategies. Key Words: Flexible Pavements – Performance Evaluation – Urban Roads – NH – SH and other roads – Performance Models – Deflection – Riding Comfort Index – Skid Resistance – Texture Depth – Unevenness – Ultra Thin White Topping
Resumo:
Das Gewindefurchen ist ein spanloses Fertigungsverfahren zur Herstellung von Innengewinden. Es bietet wesentliche Vorteile gegenüber der spanenden Innengewindeherstellung, wie z.B. keine Notwendigkeit zur Spanentsorgung, höhere Festigkeit der Gewindeflanken und eine erhöhte Prozessgeschwindigkeit. Um die Vorteile des Verfahrens unter wirtschaftlichen und technologischen Aspekten besser auszunutzen, bietet die Weiterentwicklung der Werkzeuggeometrie sowohl im makroskopischen als auch im mikroskopischen Bereich ein enormes Potential, welches nicht nur bezüglich der Standzeit bzw. Standmenge und Prozessgeschwindigkeit, sondern auch hinsichtlich der Qualität der erzeugten Gewinde erschlossen werden sollte. Durch die empirische Untersuchung der technischen und physikalischen Eigenschaften am Gewindefurcher sollen der Anformbereich und die Formkeilgeometrie in Abhängigkeit verschiedener Prozessparameter und Werkstoffe verbessert werden, um optimale Bearbeitungsergebnisse hinsichtlich der hergestellten Gewindefurchen und des auftretenden Verschleißes am Gewindefurcher bzw. Formkeils zu erreichen. Die Basis dieser Untersuchungen bildet ein neuartiger Modellversuch, bei dem modifizierte Gewindefurcher verwendet werden, die derart umgestaltet sind, dass von einem üblichen Gewindefurcher durch Umschleifen nur noch ein einzelner Gewindegang am Werkzeug verbleibt. Dadurch ist es möglich, in einer vergrößerten Vorbohrung mit einem Formkeil die einzelnen Umformstufen beim Gewindefurchen separat zu fertigen, die auftretenden Prozesskräfte während des Eingriffs in das Werkstück zu messen und das Bearbeitungsergebnis im Werkstück und den Verschleiß am Formkeil zu bewerten. Weiterhin wird eine rein theoretische Methode beschrieben, mit der die Berechnung der Umformkraft und darauf basierend der Furchmomente am Formkeil bzw. dem ganzen Gewindefurcher möglich ist. Durch die Kenntnis der berechneten Kräfte und Momente am einzelnen Formkeil bzw. dem Gewindefurcher kann bereits in der Konzeptionsphase eines Gewindefurchers eine Anpassung des Werkszeuges an die jeweiligen Bearbeitungsanforderungen durchgeführt werden, wodurch der Entwurf von Gewindefurchern wesentlich wirtschaftlicher realisierbar ist, als durch rein empirische Herangehensweisen.
Resumo:
Motiviert durch die Lebenswissenschaften (Life sciences) haben sich Untersuchungen zur Dynamik von Makromolekülen in Lösungen in den vergangenen Jahren zu einem zukunftsweisenden Forschungsgebiet etabliert, dessen Anwendungen von der Biophysik über die physikalische Chemie bis hin zu den Materialwissenschaften reichen. Neben zahlreichen experimentellen Forschungsprogrammen zur räumlichen Struktur und den Transporteigenschaften grosser MolekÄule, wie sie heute praktisch an allen (Synchrotron-) Strahlungsquellen und den Laboren der Biophysik anzutreffen sind, werden gegenwärtig daher auch umfangreiche theoretische Anstrengungen unternommen, um das Diffusionsverhalten von Makromolekülen besser zu erklären. Um neue Wege für eine quantitative Vorhersagen des Translations- und Rotationsverhaltens grosser Moleküle zu erkunden, wurde in dieser Arbeit ein semiphänomenologischer Ansatz verfolgt. Dieser Ansatz erlaubte es, ausgehend von der Hamiltonschen Mechanik des Gesamtsystems 'Molekül + Lösung', eine Mastergleichung für die Phasenraumdichte der Makromoleküle herzuleiten, die den Einfluss der Lösung mittels effektiver Reibungstensoren erfasst. Im Rahmen dieses Ansatzes gelingt es z.B. (i) sowohl den Einfluss der Wechselwirkung zwischen den makromolekularen Gruppen (den sogenannten molekularen beads) und den Lösungsteilchen zu analysieren als auch (ii) die Diffusionseigen schaften für veschiedene thermodynamische Umgebungen zu untersuchen. Ferner gelang es auf der Basis dieser Näherung, die Rotationsbewegung von grossen Molekülen zu beschreiben, die einseitig auf einer Oberfläche festgeheftet sind. Im Vergleich zu den aufwendigen molekulardynamischen (MD) Simulationen grosser Moleküle zeichnet sich die hier dargestellte Methode vor allem durch ihren hohen `Effizienzgewinn' aus, der für komplexe Systeme leicht mehr als fünf Grössenordnungen betragen kann. Dieser Gewinn an Rechenzeit erlaubt bspw. Anwendungen, wie sie mit MD Simulationen wohl auch zukünftig nicht oder nur sehr zögerlich aufgegriffen werden können. Denkbare Anwendungsgebiete dieser Näherung betreffen dabei nicht nur dichte Lösungen, in denen auch die Wechselwirkungen der molekularen beads zu benachbarten Makromolekülen eine Rolle spielt, sondern auch Untersuchungen zu ionischen Flüssigkeiten oder zur Topologie grosser Moleküle.
Resumo:
Mit aktiven Magnetlagern ist es möglich, rotierende Körper durch magnetische Felder berührungsfrei zu lagern. Systembedingt sind bei aktiv magnetgelagerten Maschinen wesentliche Signale ohne zusätzlichen Aufwand an Messtechnik für Diagnoseaufgaben verfügbar. In der Arbeit wird ein Konzept entwickelt, das durch Verwendung der systeminhärenten Signale eine Diagnose magnetgelagerter rotierender Maschinen ermöglicht und somit neben einer kontinuierlichen Anlagenüberwachung eine schnelle Bewertung des Anlagenzustandes gestattet. Fehler können rechtzeitig und ursächlich in Art und Größe erkannt und entsprechende Gegenmaßnahmen eingeleitet werden. Anhand der erfassten Signale geschieht die Gewinnung von Merkmalen mit signal- und modellgestützten Verfahren. Für den Magnetlagerregelkreis erfolgen Untersuchungen zum Einsatz modellgestützter Parameteridentifikationsverfahren, deren Verwendbarkeit wird bei der Diagnose am Regler und Leistungsverstärker nachgewiesen. Unter Nutzung von Simulationsmodellen sowie durch Experimente an Versuchsständen werden die Merkmalsverläufe im normalen Referenzzustand und bei auftretenden Fehlern aufgenommen und die Ergebnisse in einer Wissensbasis abgelegt. Diese dient als Grundlage zur Festlegung von Grenzwerten und Regeln für die Überwachung des Systems und zur Erstellung wissensbasierter Diagnosemodelle. Bei der Überwachung werden die Merkmalsausprägungen auf das Überschreiten von Grenzwerten überprüft, Informationen über erkannte Fehler und Betriebszustände gebildet sowie gegebenenfalls Alarmmeldungen ausgegeben. Sich langsam anbahnende Fehler können durch die Berechnung der Merkmalstrends mit Hilfe der Regressionsanalyse erkannt werden. Über die bisher bei aktiven Magnetlagern übliche Überwachung von Grenzwerten hinaus erfolgt bei der Fehlerdiagnose eine Verknüpfung der extrahierten Merkmale zur Identifizierung und Lokalisierung auftretender Fehler. Die Diagnose geschieht mittels regelbasierter Fuzzy-Logik, dies gestattet die Einbeziehung von linguistischen Aussagen in Form von Expertenwissen sowie die Berücksichtigung von Unbestimmtheiten und ermöglicht damit eine Diagnose komplexer Systeme. Für Aktor-, Sensor- und Reglerfehler im Magnetlagerregelkreis sowie Fehler durch externe Kräfte und Unwuchten werden Diagnosemodelle erstellt und verifiziert. Es erfolgt der Nachweis, dass das entwickelte Diagnosekonzept mit beherrschbarem Rechenaufwand korrekte Diagnoseaussagen liefert. Durch Kaskadierung von Fuzzy-Logik-Modulen wird die Transparenz des Regelwerks gewahrt und die Abarbeitung der Regeln optimiert. Endresultat ist ein neuartiges hybrides Diagnosekonzept, welches signal- und modellgestützte Verfahren der Merkmalsgewinnung mit wissensbasierten Methoden der Fehlerdiagnose kombiniert. Das entwickelte Diagnosekonzept ist für die Anpassung an unterschiedliche Anforderungen und Anwendungen bei rotierenden Maschinen konzipiert.
Resumo:
This thesis in Thermal Flow Drilling and Flowtap in thin metal sheet and pipes of copper and copper alloys had as objectives to know the comportment of copper and copper alloys sheet metal during the Thermal Flow Drill processes with normal tools, to know the best Speed and Feed machine data for the best bushing quality, to known the best Speed for Form Tapping processes and to know the best bush long in pure copper pipes for water solar interchange equipment. Thermal Flow Drilling (TFD) and Form Tapping (FT) is one of the research lines of the Institute of Production and Logistics (IPL) at University of Kassel. At December 1995, a work meeting of IPL, Santa Catarina University, Brazil, Buenos Aires University, Argentine, Tarapacá University (UTA), Chile members and the CEO of Flowdrill B.V. was held in Brazil. The group decided that the Manufacturing Laboratory (ML) of UTA would work with pure copper and brass alloys sheet metal and pure copper pipes in order to develop a water interchange solar heater. The Flowdrill BV Company sent tools to Tarapacá University in 1996. In 1999 IPL and the ML carried out an ALECHILE research project promoted by the DAAD and CONICyT in copper sheet metal and copper pipes and sheet metal a-brass alloys. The normal tools are lobed, conical tungsten carbide tool. When rotated at high speed and pressed with high axial force into sheet metal or thin walled tube generated heat softens the metal and allows the drill to feed forward produce a hole and simultaneously form a bushing from the displacement material. In the market exist many features but in this thesis is used short and longs normal tools of TFD. For reach the objectives it was takes as references four qualities of the frayed end bushing, where the best one is the quality class I. It was used pure copper and a-brass alloys sheet metals, with different thickness. It was used different TFD drills diameter for four thread type, from M-5 to M10. Similar to the Aluminium sheet metals studies it was used the predrilling processes with HSS drills around 30% of the TFD diameter (1,5 – 3,0 mm D). In the next step is used only 2,0 mm thick metal sheet, and 9,2 mm TFD diameter for M-10 thread. For the case of pure commercial copper pipes is used for ¾” inch diameter and 12, 8 mm (3/8”) TFD drill for holes for 3/8” pipes and different normal HSS drills for predrilling processes. The chemical sheet metal characteristics were takes as reference for the material behaviour. The Chilean pure copper have 99,35% of Cu and 0,163% of Zinc and the Chilean a-brass alloys have 75,6% of Cu and 24,0% of Zinc. It is used two German a-brass alloys; Nº1 have 61,6% of Cu, 36,03 % of Zinc and 2,2% of Pb and the German a-brass alloys Nº2 have 63,1% of Cu, 36,7% of Zinc and 0% of Pb. The equipments used were a HAAS CNC milling machine centre, a Kistler dynamometer, PC Pentium II, Acquisition card, TESTPOINT and XAct software, 3D measurement machine, micro hardness, universal test machine, and metallographic microscope. During the test is obtained the feed force and momentum curves that shows the material behaviour with TFD processes. In general it is take three phases. It was possible obtain the best machining data for the different sheet of copper and a-brass alloys thick of Chilean materials and bush quality class I. In the case of a-brass alloys, the chemical components and the TFD processes temperature have big influence. The temperature reach to 400º Celsius during the TFD processes and the a-brass alloys have some percents of Zinc the bush quality is class I. But when the a-brass alloys have some percents of Lead who have 200º C melting point is not possible to obtain a bush, because the Lead gasify and the metallographic net broke. During the TFD processes the recrystallization structures occur around the Copper and a-brass alloy bush, who gives more hardness in these zones. When the threads were produce with Form Tapping processes with Flowtap tools, this hardness amount gives a high limit load of the thread when hey are tested in a special support that was developed for it. For eliminated the predrilling processes with normal HSS drills it was developed a compound tool. With this new tool it was possible obtain the best machining data for quality class I bush. For the copper pipes it is made bush without predrilling and the quality class IV was obtained. When it is was used predrilling processes, quality classes I bush were obtained. Then with different HSS drill diameter were obtained different long bush, where were soldering with four types soldering materials between pipes with 3/8” in a big one as ¾”. Those soldering unions were tested by traction test and all the 3/8” pipes broken, and the soldering zone doesn’t have any problem. Finally were developed different solar water interchange heaters and tested. As conclusions, the present Thesis shows that the Thermal Flow Drilling in thinner metal sheets of cooper and cooper alloys needs a predrilling process for frayed end quality class I bushings, similar to thinner sheets of aluminium bushes. The compound tool developed could obtain quality class I bushings and excludes predrilling processes. The bush recrystalization, product of the friction between the tool and the material, the hardness grows and it is advantageous for the Form Tapping. The methodology developed for commercial copper pipes permits to built water solar interchange heaters.
Resumo:
Diese Arbeit behandelt die Problemstellung der modellbasierten Fehlerdiagnose für Lipschitz-stetige nichtlineare Systeme mit Unsicherheiten. Es wird eine neue adaptive Fehlerdiagnosemethode vorgestellt. Erkenntnisse und Verfahren aus dem Bereich der Takagi-Sugeno (TS) Fuzzy-Modellbildung und des Beobachterentwurfs sowie der Sliding-Mode (SM) Theorie werden genutzt, um einen neuartigen robusten und nichtlinearen TS-SM-Beobachter zu entwickeln. Durch diese Zusammenführung lassen sich die jeweiligen Vorteile beider Ansätze miteinander kombinieren. Bedingungen zur Konvergenz des Beobachters werden als lineare Matrizenungleichungen (LMIs) abgeleitet. Diese Bedingungen garantieren zum einen die Stabilität und liefern zum anderen ein direktes Entwurfsverfahren für den Beobachter. Der Beobachterentwurf wird für die Fälle messbarer und nicht messbarer Prämissenvariablen angegeben. Durch die TS-Erweiterung des in dieser Arbeit verwendeten SM-Beobachters ist es möglich, den diskontinuierlichen Rückführterm mithilfe einer geeigneten kontinuierlichen Funktion zu approximieren und dieses Signal daraufhin zur Fehlerdiagnose auszuwerten. Dies liefert eine Methodik zur Aktor- und Sensorfehlerdiagnose nichtlinearer unsicherer Systeme. Gegenüber anderen Ansätzen erlaubt das Vorgehen eine quantitative Bestimmung und teilweise sogar exakte Rekonstruktion des Fehlersignalverlaufs. Darüber hinaus ermöglicht der Ansatz die Berechnung konstanter Fehlerschwellen direkt aus dem physikalischen Vorwissen über das betrachtete System. Durch eine Erweiterung um eine Betriebsphasenerkennung wird es möglich, die Schwellenwerte des Fehlerdiagnoseansatzes online an die aktuelle Betriebsphase anzupassen. Hierdurch ergibt sich in Betriebsphasen mit geringen Modellunsicherheiten eine deutlich erhöhte Fehlersensitivität. Zudem werden in Betriebsphasen mit großen Modellunsicherheiten Falschalarme vermieden. Die Kernidee besteht darin, die aktuelle Betriebsphase mittels eines Bayes-Klassikators in Echtzeit zu ermitteln und darüber die Fehlerschwellen an die a-priori de nierten Unsicherheiten der unterschiedlichen Betriebsphasen anzupassen. Die E ffektivität und Übertragbarkeit der vorgeschlagenen Ansätze werden einerseits am akademischen Beispiel des Pendelwagens und anderseits am Beispiel der Sensorfehlerdiagnose hydrostatisch angetriebener Radlader als praxisnahe Anwendung demonstriert.
Resumo:
Evolutionäre Algorithmen werden gerne für Optimierungsaufgaben mit sehr vielen Freiheitsgraden eingesetzt. Eine spezielle Konvergenzeigenschaft, daß nämlich der Rechenaufwand nur mit der Wurzel der Anzahl der Unbekannten steigt, prädestiniert sie dafür. Die evolutionären Algorithmen haben aber auch noch eine weitere interessante Eigenschaft: Von der Zielfunktion wird nur verlangt, daß sie monoton ist - nichts weiter. Speziell wird, im Gegensatz zu gradientenbasierten Verfahren, keinerlei Ableitung von der Zielfunktion benötigt. Dadurch können evolutionäre Algorithmen auch in solchen Fällen eingesetzt werden, in denen Ableitungen der Zielfunktion nicht oder nur schwierig zu beschaffen sind. Die evolutionären Algorithmen kommen deshalb mit so geringen Anforderungen an die Zielfunktion aus, weil nur absolute Bewertungen einzelner Punkte (hier Vektoren) im Lösungsraum durch die Zielfunktion vorgenommen werden. Dafür werden eine gewisse Anzahl Punkte gleichzeitig betrachtet. Im direkten Vergleich untereinander relativ günstig liegende Punkte werden für die weitere Rechnung übernommen, die anderen verworfen. Aus den Komponenten der übernommenen Punkte werden nun zufällig neue Punkte zusammengesetzt und ein wenig verschoben. Dann schließt sich der Kreis, indem diese neuen Punkte ebenfalls bewertet werden. Im Verlauf einer solchen Iteration konvergiert die Punktmenge in der Regel gegen ein Optimum. Oft kommt es gerade zu Beginn der Iteration zu schnellen Fortschritten. In dieser Arbeit wird ein Verfahren vorgestellt, bei dem mit Hilfe von evolutionären Algorithmen verbessernde Eingriffe in laufenden Echtzeitsystemen vorgenommen werden. Was gut oder schlecht ist, wird zu diesem Zweck über die Zielfunktion für die Optimierung definiert. Da von der Zielfunktion letztlich das Verhalten des Gesamtsystems abhängt, sollte sie sorgfältig ausgewählt werden. Die Eingriffe in das System sind zeitlich begrenzte Steuertrajektorien. Sie werden zusätzlich zur permanent wirkenden Regelung auf das System aufgebracht. Um die Anzahl der zu optimierenden Variablen in Grenzen zu halten, werden die Steuertrajektorien durch wenige Parameter repräsentiert. Da die Steuertrajektorien im voraus berechnet werden müssen, wird das Systemverhalten mittels eines Modells für eine gewisse, in der Zukunft liegende, Zeitspanne vorhergesagt. Wird die geforderte Qualität während dieser Zeitspanne unterschritten, kann so schon im Vorfeld ein Optimierungslauf des evolutionären Algorithmus durchgeführt werden. Allerdings ist die zur Verfügung stehende Rechenzeit von vornherein begrenzt. Daher ist es wesentlich, daß die mit evolutionären Algorithmen häufig assoziierte lange Rechenzeit nicht benötigt wird. Tatsächlich läßt sich unter Umständen mit wenig Rechenzeit auskommen. Erstens wird nur mit wenigen Variablen gerechnet, zweitens kommt es bei dem beschriebenen Verfahren - halbwegs gutmütige Systeme vorausgesetzt - gar nicht auf die letzte Nachkommastelle, sondern (ähnlich wie bei Sliding-Mode-Regelungen) mehr auf eine Tendenz an. Da evolutionäre Algorithmen aber gerade zu Beginn einer Iteration die größten Fortschritte in Richtung des Optimums machen, kann schon nach vergleichsweise wenigen Schritten eine deutliche Verbesserung der Gesamtsituation erreicht werden. Gerade um eine schnelle Konvergenz zu erreichen, sind die spezielle Ausprägung und die Parameter des evolutionären Algorithmus mit Bedacht zu wählen. Dafür werden im Rahmen der Arbeit einige Experimente durchgeführt. Anhand der Ergebnisse der Experimente können konkrete Empfehlungen für eine günstige Konfiguration des evolutionären Algorithmus gegeben werden. Um es vorwegzunehmen: Zuviel Aufwand beim evolutionären Algorithmus zu treiben, lohnt sich nicht. Schon mit einfachen Konfigurationen können gute Ergebnisse erzielt werden. Die einzige Maßnahme, die sich bei den Experimenten tatsächlich als vorteilhaft herausstellte, war die Aufteilung der Gesamtpopulation (betrachtete Punktmenge im Lösungsraum) in mehrere Subpopulationen. Schließlich wird noch ein Computerprogramm beschrieben, das die Arbeitsweise des vorgestellten Verfahrens am Bildschirm erlebbar macht. Die einzelnen Komponenten werden vom Programm während der Ausführung mit einigen wesentlichen Rechengrößen visualisiert. Der Betrachter erhält so einen besseren Eindruck vom Zusammenwirken der einzelnen Verfahrens-Teile.
Resumo:
Diese Arbeit befasst sich mit der Modellbildung mechatronischer Systeme mit Reibung. Geeignete dynamische Modelle sind die Grundlage für verschiedenste Aufgabenstellungen. Sind dynamische Prozessmodelle verfügbar, so können leistungsfähige modellbasierte Entwurfsmethoden angewendet werden sowie modellbasierte Anwendungen entwickelt werden. Allerdings ist der Aufwand für die Modellbildung ein beschränkender Faktor für eine weite Verbreitung modellbasierter Applikationen in der Praxis. Eine Automatisierung des Modellbildungsprozesses ist deshalb von großem Interesse. Die vorliegende Arbeit stellt für die Klasse „mechatronischer Systeme mit Reibung“ drei Modellierungsmethoden vor: semi-physikalische Modellierung, Sliding-Mode-Beobachter-basierte Modellierung und empirische Modellierung mit einem stückweise affinen (PWA) Modellansatz. Zum Ersten wird die semi-physikalische Modellierung behandelt. Gegenüber anderen Verfahren, die häufig umfangreiche Vorkenntnisse und aufwändige Experimente erfordern, haben diese neuen Verfahren den Vorteil, dass die Modellierung von Systemen mit Reibung selbst bei begrenzten Vorkenntnissen und minimalem Experimentaufwand automatisiert werden kann. Zum Zweiten wird ein neuer Ansatz zur Reibkraftrekonstruktion und Reibmodellierung mittels Sliding-Mode-Beobachter präsentiert. Durch Verwendung des vorgestellten Sliding-Mode- Beobachters, der basierend auf einem einfachen linearen Zustandsraummodell entworfen wird, lässt sich die Reibung datengetrieben aus den Ein-/Ausgangsmessdaten (im offenen Regelkreis) rekonstruieren und modellieren. Im Vergleich zu anderen Reibmodellierungsmethoden, die häufig umfangreiche Vorkenntnisse und aufwändige Messungen im geschlossenen Regelkreis erfordern, haben diese neuen Verfahren den Vorteil, dass die Modellierung von Systemen mit Reibung selbst bei begrenzten Vorkenntnissen und minimalem Experimentaufwand weitgehend automatisiert werden kann. Zum Dritten wird ein PWA-Modellierungsansatz mit einer clusterungsbasierten Identifikationsmethode für Systeme mit Reibung vorgestellt. In dieser Methode werden die Merkmale in Hinblick auf Reibeffekte ausgewählt. Und zwar wird der klassische c-Means-Algorithmus verwendet, welcher bedienfreundlich, effizient und geeignet für große und reale Datensätze ist. Im Gegensatz zu anderen Methoden sind bei dieser Methode nur wenige Entwurfsparameter einzustellen und sie ist für reale Systeme mit Reibung einfach anwendbar. Eine weitere Neuheit der vorgestellten PWA-Methode liegt darin, dass die Kombination der Clustervaliditätsmaße und Modellprädiktionsfehler zur Festlegung der Anzahl der Teilmodelle benutzt wird. Weiterhin optimiert die vorgestellte Methode die Parameter der lokalen Teilmodelle mit der OE (Output-Fehler)-Schätzmethode. Als Anwendungsbeispiele werden Drosselklappen, Drallklappen und AGR-Ventile (Abgasrückführventil) im Dieselfahrzeug betrachtet und die erzeugten Modelle werden in der industriellen HiL-Simulation eingesetzt. Aufgrund der Effizienz und Effektivität der Modellierungsmethoden sind die vorgestellten Methoden direkt in der automobilen Praxis einsetzbar.
Resumo:
Seed moisture content is significant in the handling and processing of seeds. This work therefore determined the physical properties of Locust bean seeds as functions of seed moisture content in the moisture range of 5.9 – 28.2% dry basis. Mohsenin, Stepanoff and ASAE standard methods were used in determining the properties. Increases in seed dimensions vitz length = 10.2±1.0 – 11.3±0.9 mm; width = 8.5±0.8 – 9.1±0.6 mm; surface area = 191.2±24.6 – 208.3±26.3 mm2 ; geometric mean diameter = 7.78±0.49 – 8.12±0.03 and arithmetic mean diameter = 8.06±0.56 – 8.34±0.49 mm were recorded. Seed thickness = 5.49±0.43 – 5.26±0.62 mm; sphericity = 0.75±0.04 – 0.71±0.03; true density = 1251.96±55.5 - 1222±62.16 kgm-3 and porosity = 48.4±2.14 – 41.9±3.78 decreased. Static coefficient of friction increased on plywood (0.5±0.02 – 0.6±0.01), glass (0.4±0.05 – 0.5±0.01) and decreased on aluminium (0.5±0.02 – 0.5±0.04). A data of the physical properties of Locust bean; Parkia biglobosa was developed. This is useful for the design and development of equipment necessary for its handling and processing.
Resumo:
Humans can effortlessly manipulate objects in their hands, dexterously sliding and twisting them within their grasp. Robots, however, have none of these capabilities, they simply grasp objects rigidly in their end effectors. To investigate this common form of human manipulation, an analysis of controlled slipping of a grasped object within a robot hand was performed. The Salisbury robot hand demonstrated many of these controlled slipping techniques, illustrating many results of this analysis. First, the possible slipping motions were found as a function of the location, orientation, and types of contact between the hand and object. Second, for a given grasp, the contact types were determined as a function of the grasping force and the external forces on the object. Finally, by changing the grasping force, the robot modified the constraints on the object and affect controlled slipping slipping motions.
Resumo:
Methods are developed for predicting vibration response characteristics of systems which change configuration during operation. A cartesian robot, an example of such a position-dependent system, served as a test case for these methods and was studied in detail. The chosen system model was formulated using the technique of Component Mode Synthesis (CMS). The model assumes that he system is slowly varying, and connects the carriages to each other and to the robot structure at the slowly varying connection points. The modal data required for each component is obtained experimentally in order to get a realistic model. The analysis results in prediction of vibrations that are produced by the inertia forces as well as gravity and friction forces which arise when the robot carriages move with some prescribed motion. Computer simulations and experimental determinations are conducted in order to calculate the vibrations at the robot end-effector. Comparisons are shown to validate the model in two ways: for fixed configuration the mode shapes and natural frequencies are examined, and then for changing configuration the residual vibration at the end of the mode is evaluated. A preliminary study was done on a geometrically nonlinear system which also has position-dependency. The system consisted of a flexible four-bar linkage with elastic input and output shafts. The behavior of the rocker-beam is analyzed for different boundary conditions to show how some limiting cases are obtained. A dimensional analysis leads to an evaluation of the consequences of dynamic similarity on the resulting vibration.
Resumo:
This thesis addresses the problem of developing automatic grasping capabilities for robotic hands. Using a 2-jointed and a 4-jointed nmodel of the hand, we establish the geometric conditions necessary for achieving form closure grasps of cylindrical objects. We then define and show how to construct the grasping pre-image for quasi-static (friction dominated) and zero-G (inertia dominated) motions for sensorless and sensor-driven grasps with and without arm motions. While the approach does not rely on detailed modeling, it is computationally inexpensive, reliable, and easy to implement. Example behaviors were successfully implemented on the Salisbury hand and on a planar 2-fingered, 4 degree-of-freedom hand.
Resumo:
This thesis presents the development of hardware, theory, and experimental methods to enable a robotic manipulator arm to interact with soils and estimate soil properties from interaction forces. Unlike the majority of robotic systems interacting with soil, our objective is parameter estimation, not excavation. To this end, we design our manipulator with a flat plate for easy modeling of interactions. By using a flat plate, we take advantage of the wealth of research on the similar problem of earth pressure on retaining walls. There are a number of existing earth pressure models. These models typically provide estimates of force which are in uncertain relation to the true force. A recent technique, known as numerical limit analysis, provides upper and lower bounds on the true force. Predictions from the numerical limit analysis technique are shown to be in good agreement with other accepted models. Experimental methods for plate insertion, soil-tool interface friction estimation, and control of applied forces on the soil are presented. In addition, a novel graphical technique for inverting the soil models is developed, which is an improvement over standard nonlinear optimization. This graphical technique utilizes the uncertainties associated with each set of force measurements to obtain all possible parameters which could have produced the measured forces. The system is tested on three cohesionless soils, two in a loose state and one in a loose and dense state. The results are compared with friction angles obtained from direct shear tests. The results highlight a number of key points. Common assumptions are made in soil modeling. Most notably, the Mohr-Coulomb failure law and perfectly plastic behavior. In the direct shear tests, a marked dependence of friction angle on the normal stress at low stresses is found. This has ramifications for any study of friction done at low stresses. In addition, gradual failures are often observed for vertical tools and tools inclined away from the direction of motion. After accounting for the change in friction angle at low stresses, the results show good agreement with the direct shear values.
Resumo:
One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge