955 resultados para Singular perturbations
Resumo:
A swarm is a temporary structure formed when several thousand honey bees leave their hive and settle on some object such as the branch of a tree. They remain in this position until a suitable site for a new home is located by the scout bees. A continuum model based on heat conduction and heat generation is used to predict temperature profiles in swarms. Since internal convection is neglected, the model is applicable only at low values of the ambient temperature T-a. Guided by the experimental observations of Heinrich (1981a-c, J. Exp. Biol. 91, 25-55; Science 212, 565-566; Sci. Am. 244, 147-160), the analysis is carried out mainly for non-spherical swarms. The effective thermal conductivity is estimated using the data of Heinrich (1981a, J. Exp. Biol. 91, 25-55) for dead bees. For T-a = 5 and 9 degrees C, results based on a modified version of the heat generation function due to Southwick (1991, The Behaviour and Physiology of Bees, PP 28-47. C.A.B. International, London) are in reasonable agreement with measurements. Results obtained with the heat generation function of Myerscough (1993, J. Theor. Biol. 162, 381-393) are qualitatively similar to those obtained with Southwick's function, but the error is more in the former case. The results suggest that the bees near the periphery generate more heat than those near the core, in accord with the conjecture of Heinrich (1981c, Sci. Am. 244, 147-160). On the other hand, for T-a = 5 degrees C, the heat generation function of Omholt and Lonvik (1986, J. Theor. Biol. 120, 447-456) leads to a trivial steady state where the entire swarm is at the ambient temperature. Therefore an acceptable heat generation function must result in a steady state which is both non-trivial and stable with respect to small perturbations. Omholt and Lonvik's function satisfies the first requirement, but not the second. For T-a = 15 degrees C, there is a considerable difference between predicted and measured values, probably due to the neglect of internal convection in the model.
Resumo:
The paper analyses the effect of spatial smoothing on the performance of MUSIC algorithm. In particular, an attempt is made to bring out two effects of the smoothing: (i) reduction of effective correlation between the impinging signals and (ii) reduction of the noise perturbations due to finite data. For the case of a two-source scenario with widely spaced sources, simplified expressions for improvement with smoothing have been obtained which provide more insight into the impact of smoothing. Specifically, a pessimistic estimate of the minimum value of source correlation beyond which the smoothing is beneficial is brought out by these expressions. Computer simulations are used to demonstrate the usefulness of the analytical results.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.
Resumo:
Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.
Resumo:
An important tool in signal processing is the use of eigenvalue and singular value decompositions for extracting information from time-series/sensor array data. These tools are used in the so-called subspace methods that underlie solutions to the harmonic retrieval problem in time series and the directions-of-arrival (DOA) estimation problem in array processing. The subspace methods require the knowledge of eigenvectors of the underlying covariance matrix to estimate the parameters of interest. Eigenstructure estimation in signal processing has two important classes: (i) estimating the eigenstructure of the given covariance matrix and (ii) updating the eigenstructure estimates given the current estimate and new data. In this paper, we survey some algorithms for both these classes useful for harmonic retrieval and DOA estimation problems. We begin by surveying key results in the literature and then describe, in some detail, energy function minimization approaches that underlie a class of feedback neural networks. Our approaches estimate some or all of the eigenvectors corresponding to the repeated minimum eigenvalue and also multiple orthogonal eigenvectors corresponding to the ordered eigenvalues of the covariance matrix. Our presentation includes some supporting analysis and simulation results. We may point out here that eigensubspace estimation is a vast area and all aspects of this cannot be fully covered in a single paper. (C) 1995 Academic Press, Inc.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
Stochastic structural systems having a stochastic distribution of material properties and stochastic external loadings in space are analysed when a crack of deterministic size is present. The material properties and external loadings are considered to constitute independent, two-dimensional, univariate, real, homogeneous stochastic fields. The stochastic fields are characterized by their means, variances, autocorrelation functions or the equivalent power spectral density functions, and scale fluctuations. The Young's modulus and Poisson's ratio are treated to be stochastic quantities. The external loading is treated to be a stochastic field in space. The energy release rate is derived using the method of virtual crack extension. The deterministic relationship is derived to represent the sensitivities of energy release rate with respect to both virtual crack extension and real system parameter fluctuations. Taylor series expansion is used and truncation is made to the first order. This leads to the determination of second-order properties of the output quantities to the first order. Using the linear perturbations about the mean values of the output quantities, the statistical information about the energy release rates, SIF and crack opening displacements are obtained. Both plane stress and plane strain cases are considered. The general expressions for the SIF in all the three fracture modes are derived and a more detailed analysis is conducted for a mode I situation. A numerical example is given.
Resumo:
Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is-first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.
Resumo:
We consider a slow fading multiple-input multiple-output (MIMO) system with channel state information at both the transmitter and receiver. A well-known precoding scheme is based upon the singular value decomposition (SVD) of the channel matrix, which transforms the MIMO channel into parallel subchannels. Despite having low maximum likelihood decoding (MLD) complexity, this SVD precoding scheme provides a diversity gain which is limited by the diversity gain of the weakest subchannel. We therefore propose X- and Y-Codes, which improve the diversity gain of the SVD precoding scheme but maintain the low MLD complexity, by jointly coding information across a pair of subchannels. In particular, subchannels with high diversity gain are paired with those having low diversity gain. A pair of subchannels is jointly encoded using a 2 2 real matrix, which is fixed a priori and does not change with each channel realization. For X-Codes, these rotation matrices are parameterized by a single angle, while for Y-Codes, these matrices are left triangular matrices. Moreover, we propose X-, Y-Precoders with the same structure as X-, Y-Codes, but with encoding matrices adapted to each channel realization. We observed that X-Codes/Precoders are good for well-conditioned channels, while Y-Codes/Precoders are good for ill-conditioned channels.
Suboptimal Midcourse Guidance of Interceptors for High-Speed Targets with Alignment Angle Constraint
Resumo:
Using the recently developed computationally efficient model predictive static programming and a closely related model predictive spread control concept, two nonlinear suboptimal midcourse guidance laws are presented in this paper for interceptors engaging against incoming high-speed ballistic missiles. The guidance laws are primarily based on nonlinear optimal control theory, and hence imbed effective trajectory optimization concepts into the guidance laws. Apart from being energy efficient by minimizing the control usage throughout the trajectory (minimum control usage leads to minimum turning, and hence leads to minimum induced drag), both of these laws enforce desired alignment constraints in both elevation and azimuth in a hard-constraint sense. This good alignment during midcourse is expected to enhance the effectiveness of the terminal guidance substantially. Both point mass as well as six-degree-of-freedom simulation results (with a realistic inner-loop autopilot based on dynamic inversion) are presented in this paper, which clearly shows the effectiveness of the proposed guidance laws. It has also been observed that, even with different perturbations of missile parameters, the performance of guidance is satisfactory. A comparison study, with the vector explicit guidance scheme proposed earlier in the literature, also shows that the newly proposed model-predictive-static-programming-based and model-predictive-spread-control-based guidance schemes lead to lesser lateral acceleration demand and lesser velocity loss during engagement.
Resumo:
The singularity structure of the solutions of a general third-order system, with polynomial right-hand sides of degree less than or equal to two, is studied about a movable singular point, An algorithm for transforming the given third-order system to a third-order Briot-Bouquet system is presented, The dominant behavior of a solution of the given system near a movable singularity is used to construct a transformation that changes the given system directly to a third-order Briot-Bouquet system. The results of Horn for the third-order Briot-Bouquet system are exploited to give the complete form of the series solutions of the given third-order system; convergence of these series in a deleted neighborhood of the singularity is ensured, This algorithm is used to study the singularity structure of the solutions of the Lorenz system, the Rikitake system, the three-wave interaction problem, the Rabinovich system, the Lotka-Volterra system, and the May-Leonard system for different sets of parameter values. The proposed approach goes far beyond the ARS algorithm.
Resumo:
The statistical performance analysis of ESPRIT, root-MUSIC, minimum-norm methods for direction estimation, due to finite data perturbations, using the modified spatially smoothed covariance matrix, is developed. Expressions for the mean-squared error in the direction estimates are derived based on a common framework. Based on the analysis, the use of the modified smoothed covariance matrix improves the performance of the methods when the sources are fully correlated. Also, the performance is better even when the number of subarrays is large unlike in the case of the conventionally smoothed covariance matrix. However, the performance for uncorrelated sources deteriorates due to an artificial correlation introduced by the modified smoothing. The theoretical expressions are validated using extensive simulations. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Crystal structures of the active-site mutants D99A and H48Q and the calcium-loop mutant D49E of bovine phospholipase A(2) have been determined at around 1.9 Angstrom resolution. The D99A mutant is isomorphous to the orthorhombic recombinant enzyme, space group P2(1)2(1)2(1), The H48Q and the calcium-loop mutant D49E are isomorphous to the trigonal recombinant enzyme, space group P3(1)21, The two active-site mutants show no major structural perturbations. The structural water is absent in D99A and, therefore, the hydrogen-bonding scheme is changed. In H48Q, the catalytic water is present and hydrogen bonded to Gln48 N, but the second water found in native His48 is absent. In the calcium-loop mutant D49E, the two water molecules forming the pentagonal bipyramid around calcium are absent and only one O atom of the Glu49 carboxylate group is coordinated to calcium, resulting in only four ligands.
Resumo:
We consider Gaussian multiple-input multiple-output (MIMO) channels with discrete input alphabets. We propose a non-diagonal precoder based on X-Codes in to increase the mutual information. The MIMO channel is transformed into a set of parallel subchannels using Singular Value Decomposition (SVD) and X-codes are then used to pair the subchannels. X-Codes are fully characterized by the pairings and the 2 × 2 real rotation matrices for each pair (parameterized with a single angle). This precoding structure enables to express the total mutual information as a sum of the mutual information of all the pairs. The problem of finding the optimal precoder with the above structure, which maximizes the total mutual information, is equivalent to i) optimizing the rotation angle and the power allocation within each pair and ii) finding the optimal pairing and power allocation among the pairs. It is shown that the mutual information achieved with the proposed pairing scheme is very close to that achieved with the optimal precoder by Cruz et al., and significantly better than mercury/waterfilling strategy by Lozano et al.. Our approach greatly simplifies both the precoder optimization and the detection complexity, making it suitable for practical applications.