947 resultados para Single magnetic atom


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study single electron transport across a single Bi dopant in a silicon nanotransistor to assess how the strong hyperfine coupling with the Bi nuclear spin I = 9/2 affects the transport characteristics of the device. In the sequential tunneling regime we find that at, temperatures in the range of 100 mK, dI/dV curves reflect the zero field hyperfine splitting as well as its evolution under an applied magnetic field. Our non-equilibrium quantum simulations show that nuclear spins can be partially polarized parallel or antiparallel to the electronic spin just tuning the applied bias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isolated neutron stars (NSs) show a bewildering variety of astrophysical manifestations, presumably shaped by the magnetic field strength and topology at birth. Here, using state-of-the-art calculations of the coupled magnetic and thermal evolution of NSs, we compute the thermal spectra and pulse profiles expected for a variety of initial magnetic field configurations. In particular, we contrast models with purely poloidal magnetic fields to models dominated by a strong internal toroidal component. We find that, while the former displays double-peaked profiles and very low pulsed fractions, in the latter, the anisotropy in the surface temperature produced by the toroidal field often results in a single pulse profile, with pulsed fractions that can exceed the 50–60 per cent level even for perfectly isotropic local emission. We further use our theoretical results to generate simulated ‘observed’ spectra, and show that blackbody (BB) fits result in inferred radii that can be significantly smaller than the actual NS radius, even as low as ∼1–2 km for old NSs with strong internal toroidal fields and a high absorption column density along their line of sight. We compute the size of the inferred BB radius for a few representative magnetic field configurations, NS ages and magnitudes of the column density. Our theoretical results are of direct relevance to the interpretation of X-ray observations of isolated NSs, as well as to the constraints on the equation of state of dense matter through radius measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other phenomena. In addition to the well known renormalization of the g factor and the finite spin decoherence and relaxation times, Kondo exchange has recently been found to give rise to a newly discovered effect: the renormalization of the single ion magnetic anisotropy. Here we put these apparently different phenomena on equal footing by treating the effect of Kondo exchange perturbatively. In this formalism, the central quantity is ρJ, the product of the density of states at the Fermi energy ρ and the Kondo exchange constant J. We show that perturbation theory correctly describes the experimentally observed exchange induced shifts of the single spin excitation energies, demonstrating that Kondo exchange can be used to tune the effective magnetic anisotropy of a single spin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We perform a detailed modelling of the post-outburst surface emission of the low magnetic field magnetar SGR 0418+5729. The dipolar magnetic field of this source, B=6×1012G estimated from its spin-down rate, is in the observed range of magnetic fields for normal pulsars. The source is further characterized by a high pulse fraction and a single-peak profile. Using synthetic temperature distribution profiles, and fully accounting for the general-relativistic effects of light deflection and gravitational redshift, we generate synthetic X-ray spectra and pulse profiles that we fit to the observations. We find that asymmetric and symmetric surface temperature distributions can reproduce equally well the observed pulse profiles and spectra of SGR 0418. None the less, the modelling allows us to place constraints on the system geometry (i.e. the angles ψ and ξ that the rotation axis makes with the line of sight and the dipolar axis, respectively), as well as on the spot size and temperature contrast on the neutron star surface. After performing an analysis iterating between the pulse profile and spectra, as done in similar previous works, we further employed, for the first time in this context, a Markov-Chain Monte Carlo approach to extract constraints on the model parameters from the pulse profiles and spectra, simultaneously. We find that, to reproduce the observed spectrum and flux modulation: (a) the angles must be restricted to 65° ≲ ψ + ξ ≲ 125° or 235° ≲ ψ + ξ ≲ 295°; (b) the temperature contrast between the poles and the equator must be at least a factor of ∼6, and (c) the size of the hottest region ranges between 0.2 and 0.7 km (including uncertainties on the source distance). Lastly, we interpret our findings within the context of internal and external heating models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present detailed paleomagnetic and rock magnetic results of rock samples recovered during Leg 173. The Leg 173 cores display a multicomponent magnetization nature. Variations in magnetic properties correlate with changes in lithology that result from differences in the abundance and size of magnetic minerals. The combined investigation suggests that the magnetic properties of the "fresher" peridotite samples from Site 1070 are controlled mainly by titanomagnetite, with a strong Verwey transition in the vicinity of 110 K, and with field- and frequency-dependent susceptibility curves that resemble those of titanomagnetites. These results are in excellent agreement with thermomagnetic characteristics where titanomagnetites with Curie temperature ~580°C were identified from the "fresher" peridotites. In contrast to the magnetic properties observed from the "fresher" peridotites, the low-temperature curves for the "altered" peridotites did not show any Verwey transition. Thermomagnetic analysis using the high-temperature vibrating sample magnetometer also failed to show evidence for titanomagnetites. The remanent magnetization is carried by a thermally unstable mineral that breaks down at ~420°C, probably maghemite. The field- and frequency-dependent relationships are also directly opposite to those in the reversal zone, with no signs of titanomagnetite characteristics. Altogether, these rock magnetic data seem to be sensitive indicators of alteration and support the contention that maghemite is responsible for the magnetic signatures displayed in the altered peridotites of the upper section. The magnetic minerals of the basement rocks from Sites 1068, 1069, and 1070 are of variable particle size but fall within the pseudo-single-domain size range (0.2-14 µm). The average natural remanent magnetization (NRM) intensity of recovered serpenitinized peridotite is typically on the order of 20 mA/m for samples from Site 1068, but ~120 mA/m for samples from Site 1070. The much stronger magnetization intensity of Site 1070 is apparently in excellent agreement with the observed magnetic anomaly high. Nearly half of the NRM intensity remained after 400°C demagnetization, suggesting that the remanence can contribute significantly to the marine magnetic anomaly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relative paleointensity (RPI) method assumes that the intensity of post depositional remanent magnetization (PDRM) depends exclusively on the magnetic field strength and the concentration of the magnetic carriers. Sedimentary remanence is regarded as an equilibrium state between aligning geomagnetic and randomizing interparticle forces. Just how strong these mechanical and electrostatic forces are, depends on many petrophysical factors related to mineralogy, particle size and shape of the matrix constituents. We therefore test the hypothesis that variations in sediment lithology modulate RPI records. For 90 selected Late Quaternary sediment samples from the subtropical and subantarctic South Atlantic Ocean a combined paleomagnetic and sedimentological dataset was established. Misleading alterations of the magnetic mineral fraction were detected by a routine Fe/kappa test (Funk, J., von Dobeneck, T., Reitz, A., 2004. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, pp. 239-262). Samples with any indication of suboxic magnetite dissolution were excluded from the dataset. The parameters under study include carbonate, opal and terrigenous content, grain size distribution and clay mineral composition. Their bi- and multivariate correlations with the RPI signal were statistically investigated using standard techniques and criteria. While several of the parameters did not yield significant results, clay grain size and chlorite correlate weakly and opal, illite and kaolinite correlate moderately to the NRM/ARM signal used here as a RPI measure. The most influential single sedimentological factor is the kaolinite/illite ratio with a Pearson's coefficient of 0.51 and 99.9% significance. A three-member regression model suggests that matrix effects can make up over 50% of the observed RPI dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion-induced blindness (MIB) is a phenomenon, perhaps related to perceptual rivalry, where stationary targets disappear and reappear in a cyclic mode when viewed against a background (mask) of coherent, apparent 3-D motion. Since MIB has recently been shown to share similar temporal properties with binocular rivalry, we probed the appearance-disappearance cycle of MIB using unilateral, single-pulse transcranial magnetic stimulation (TMS)-a manipulation that has previously been shown to influence binocular rivalry. Effects were seen for both hemispheres when the timing of TMS was determined prospectively on the basis of a given subject's appearance-disappearance cycle, so that it occurred on average around 300 ms before the time of perceptual switch. Magnetic stimulation of either hemisphere shortened the time to switch from appearance to disappearance and vice versa. However, TMS of left posterior parietal cortex more selectively shortened the disappearance time of the targets if delivered in phase with the disappearance cycle, but lengthened it if TMS was delivered in the appearance phase after the perceptual switch. Opposite effects were seen in the right hemisphere, although less marked than the left-hemisphere effects. As well as sharing temporal characteristics with binocular rivalry, MIB therefore seems to share a similar underlying mechanism of interhemispheric modulation. Interhemispheric switching may thus provide a common temporal framework for uniting the diverse, multilevel phenomena of perceptual rivalry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid-state quantum computer architectures with qubits encoded using single atoms are now feasible given recent advances in the atomic doping of semiconductors. Here we present a charge qubit consisting of two dopant atoms in a semiconductor crystal, one of which is singly ionized. Surface electrodes control the qubit and a radio-frequency single-electron transistor provides fast readout. The calculated single gate times, of order 50 ps or less, are much shorter than the expected decoherence time. We propose universal one- and two-qubit gate operations for this system and discuss prospects for fabrication and scale up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pure limestones beneath the paleosols on San Salvador Island, Bahamas, contain strong positive magnetic susceptibility anomalies, although the iron content is generally very low. These magnetic phenomena differ from those associated with disconformities, which are marked by accumulation of paramagnetic airborne dust deposits with relatively high iron content. The strength and characters of the magnetic response in these subsurface zones correspond to the presence of magnetite, particularly small single-domain magnetite crystals of microbial origin. These crystals are not present elsewhere in the intergranular rock pores or microvugs. They are preferentially concentrated in capillary microborings, which developed concurrently with formation of calcite cements that have soil-related C and O isotope compositions. These magnetic zones occur several meters below the overlying soil horizons. Very thin and long linear microborings may be attributable to cyanobacterial microborers. The single-domain magnetites in these micrometer-size tunnels plugged by calcite appear to result from later occupation of these tiny holes by magnetotactic bacteria. Inorganic origin of the magnetite seems unlikely. Numerous traces that suggest subsurface microbial activity provide evidence that may be used to develop possible scenarios for subsequent biological studies of the precise bacteria involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) were used to detect petroleum-derived spray oils (PDSOs) in citrus seedlings and trees. The NMR spectrum of the phantom containing 10% (v/v) of a nC24 agricultural mineral oil (AMO) showed the resonance of the water protons at delta = 5 ppm, while the resonance of the oil protons at delta = 1.3 to 1.7 ppm. The peak resolution and the chemical shift difference of more than 3.3 ppm between water and oil protons effectively differentiated water and the oil. Chemical shift selective imaging (CSSI) was performed to localize the AMO within the stems of Citrus trifoliata L. seedlings after the application of a 4% (v/v) spray. The chemical shift selective images of the oil were acquired by excitation at delta = 1.5 ppm by averaging over 400 transients in each phase-encoding step. Oil was mainly detected in the outer cortex of stems within 10 d of spray application; some oil was also observed in the inner vascular bundle and pith of the stems at this point. CSSI was also applied to investigate the persistence of oil deposits in sprayed mature Washington navel orange (Citrus x aurantium L.) trees in an orchard. The trees were treated with either fourteen 0.25%, fourteen 0.5%, four 1.75%, or single 7% sprays of a nC23 horticultural mineral oil (HMO) 12 to 16 months before examination of plant tissues by CSSI, and were still showing symptoms of chronic phytotoxicity largely manifested as reduced yield. The oil deposits were detected in stems of sprayed flushes and unsprayed flushes produced 4 to 5 months after the last spray was applied, suggesting a potential movement of the oil via phloem and a correlation of the persistence of oil deposit in plants and the phytotoxicity. The results demonstrate that MRI is an effective method to probe the uptake and localization of PDSOs and other xenobiotics in vivo in plants noninvasively and nondestructively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New copper(II) complexes of general empirical formula, Cu(mpsme)X center dot xCH(3)COCH(3) (mpsme = anionic form of the 6-methyl-2-formylpyridine Schiff base of S-methyldithiocarbazate; X = Cl, N-3, NCS, NO3; x = 0, 0.5) have been synthesized and characterized by IR, electronic, EPR and susceptibility measurements. Room temperature mu(eff) values for the complexes are in the range 1.75-2.1 mu(beta) typical of uncoupled or weakly coupled Cu(II) centres. The EPR spectra of the [Cu(mpsme)X] (X = Cl, N-3, NO3, NCS) complexes reveal a tetragonally distorted coordination sphere around the mononuclear Cu(II) centre. We have exploited second derivative EPR spectra in conjunction with Fourier filtering (sine bell and Hamming functions) to extract all of the nitrogen hyperfine coupling matrices. While the X-ray crystallography of [Cu(mpsme)NCS] reveals a linear polymer in which the thiocyanate anion bridges the two copper(II) ions, the EPR spectra in solution are typical of a magnetically isolated monomeric Cu(II) centres indicating dissociation of the polymeric chain in solution. The structures of the free ligand, Hmpsme and the {[Cu(mpsme)NO3] center dot 0.5CH(3)COCH(3)}(2) and [Cu(mpsme)NCS](n) complexes have been determined by X-ray diffraction. The {[Cu(mpsme)NO3]0.5CH(3)COCH(3)}(2) complex is a centrosymmetric dimer in which each copper atom adopts a five-coordinate distorted square-pyramidal geometry with an N2OS2 coordination environment, the Schiff base coordinating as a uninegatively charged tridentate ligand chelating through the pyridine and azomethine nitrogen atoms and the thiolate, an oxygen atom of a unidentate nitrato ligand and a bridging sulfur atom from the second ligand completing the coordination sphere. The [Cu(mpsme)(NCS)](n) complex has a novel staircase-like one dimensional polymeric structure in which the NCS- ligands bridge two adjacent copper(II) ions asymmetrically in an end-to-end fashion providing its nitrogen atom to one copper and the sulfur atom to the other. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The way people with chronic low back pain think about pain can affect the way they move. This case report concerns a patient with chronic disabling low back pain who underwent functional magnetic resonance imaging scans during performance of a voluntary trunk muscle task under three conditions: directly after training in the task and, after one week of practice, before and after a 2.5 hour pain physiology education session. Before education there was widespread brain activity during performance of the task, including activity in cortical regions known to be involved in pain, although the task was not painful. After education widespread activity was absent so that there was no brain activation outside of the primary somatosensory cortex. The results suggest that pain physiology education markedly altered brain activity during performance of the task. The data offer a possible mechanism for difficulty in acquisition of trunk muscle training in people with pain and suggest that the change in activity associated with education may reflect reduced threat value of the task.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze photoionization and ion detection as a means of accurately counting ultracold atoms. We show that it is possible to count clouds containing many thousands of atoms with accuracies better than N-1/2 with current technology. This allows the direct probing of sub-Poissonian number statistics of atomic samples. The scheme can also be used for efficient single-atom detection with high spatiotemporal resolution. All aspects of a realistic detection scheme are considered, and we discuss experimental situations in which such a scheme could be implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical method is introduced to determine the nuclear magnetic resonance frequency of a donor (P-31) doped inside a silicon substrate under the influence of an applied electric field. This phosphorus donor has been suggested for operation as a qubit for the realization of a solid-state scalable quantum computer. The operation of the qubit is achieved by a combination of the rotation of the phosphorus nuclear spin through a globally applied magnetic field and the selection of the phosphorus nucleus through a locally applied electric field. To realize the selection function, it is required to know the relationship between the applied electric field and the change of the nuclear magnetic resonance frequency of phosphorus. In this study, based on the wave functions obtained by the effective-mass theory, we introduce an empirical correction factor to the wave functions at the donor nucleus. Using the corrected wave functions, we formulate a first-order perturbation theory for the perturbed system under the influence of an electric field. In order to calculate the potential distributions inside the silicon and the silicon dioxide layers due to the applied electric field, we use the multilayered Green's functions and solve an integral equation by the moment method. This enables us to consider more realistic, arbitrary shape, and three-dimensional qubit structures. With the calculation of the potential distributions, we have investigated the effects of the thicknesses of silicon and silicon dioxide layers, the relative position of the donor, and the applied electric field on the nuclear magnetic resonance frequency of the donor.