982 resultados para Simon, HeinrichSimon, HeinrichHeinrichSimon
Resumo:
The Georgia Institute of Technology is currently performing research that will result in the development and deployment of three instrumentation packages that allow for automated capture of personal travel-related data for a given time period (up to 10 days). These three packages include: A handheld electronic travel diary (ETD) with Global Positioning System (GPS) capabilities to capture trip information for all modes of travel; A comprehensive electronic travel monitoring system (CETMS), which includes an ETD, a rugged laptop computer, a GPS receiver and antenna, and an onboard engine monitoring system, to capture all trip and vehicle information; and a passive GPS receiver, antenna, and data logger to capture vehicle trips only.
Resumo:
Component software has many benefits, most notably increased software re-use; however, the component software process places heavy burdens on programming language technology, which modern object-oriented programming languages do not address. In particular, software components require specifications that are both sufficiently expressive and sufficiently abstract, and, where possible, these specifications should be checked formally by the programming language. This dissertation presents a programming language called Mentok that provides two novel programming language features enabling improved specification of stateful component roles. Negotiable interfaces are interface types extended with protocols, and allow specification of changing method availability, including some patterns of out-calls and re-entrance. Type layers are extensions to module signatures that allow specification of abstract control flow constraints through the interfaces of a component-based application. Development of Mentok's unique language features included creation of MentokC, the Mentok compiler, and formalization of key properties of Mentok in mini-languages called MentokP and MentokL.
Resumo:
Mesenchymal Stem Cells (MSC) are frequently incorporated into osteochondral implants and cell seeding is often facilitated with hydrogels which exert a profound influence on the chondrogenic differentiation of MSC. An attempt was made to elucidate this effect by comparing the chondrogenic differentiation of Bone Marrow Stromal Cells (BMSC) in fibrin and fibrin alginate composites. A biphasic osteochondral model which simulated the native in vivo environment was employed in the study. In the first stage of the experiment, BMSC was encapsulated in fibrin, Fibrin Alginate 0.3% (FA0.3) and 0.6% (FA0.6). Chondrogenic differentiation within these cell-hydrogel pellets was compared against that of standard cell pellets under inductive conditions and the matrices which supported chondrogenesis were used in the cartilage phase of biphasic constructs. Neo-cartilage growth was monitored in these cocultures. It was observed that hydrogel encapsulation influenced mesenchymal condensation which preceded chondrogenic differentiation. Early cell agglomeration was observed in fibrin as compared to fibrin alginate composites. These fibrin encapsulated cells differentiated into chondrocytes which secreted aggrecan and collagen II. When the alginate content rose from 0.3 to 0.6%, chondrogenic differentiation declined with a reduction in the expression of collagen II and aggrecan. Fibrin and FA0.3 were tested in the cartilage phase of the biphasic osteochondral constructs and the former supported superior cartilage growth with higher cellularity, total Glycosaminoglycan (GAG) and collagen II levels. The FA0.3 cartilage phase was found to be fragmented and partially calcified. The use of fibrin for cartilage repair was advocated as it facilitated BMSC chondrogenesis and cartilaginous growth in an osteochondral environment.
Resumo:
The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE) model provides an external validation capability for hot stabilized option; the model is one of several new modal emissions models designed to predict hot stabilized emission rates for various motor vehicle groups as a function of the conditions under which the vehicles are operating. The validation of aggregate measurements, such as speed and acceleration profile, is performed on an independent data set using three statistical criteria. The MEASURE algorithms have proved to provide significant improvements in both average emission estimates and explanatory power over some earlier models for pollutants across almost every operating cycle tested.
Resumo:
Focuses on a study which introduced an iterative modeling method that combines properties of ordinary least squares (OLS) with hierarchical tree-based regression (HTBR) in transportation engineering. Information on OLS and HTBR; Comparison and contrasts of OLS and HTBR; Conclusions.
Resumo:
Uncooperative iris identification systems at a distance and on the move often suffer from poor resolution and poor focus of the captured iris images. The lack of pixel resolution and well-focused images significantly degrades the iris recognition performance. This paper proposes a new approach to incorporate the focus score into a reconstruction-based super-resolution process to generate a high resolution iris image from a low resolution and focus inconsistent video sequence of an eye. A reconstruction-based technique, which can incorporate middle and high frequency components from multiple low resolution frames into one desired super-resolved frame without introducing false high frequency components, is used. A new focus assessment approach is proposed for uncooperative iris at a distance and on the move to improve performance for variations in lighting, size and occlusion. A novel fusion scheme is then proposed to incorporate the proposed focus score into the super-resolution process. The experiments conducted on the The Multiple Biometric Grand Challenge portal database shows that our proposed approach achieves an EER of 2.1%, outperforming the existing state-of-the-art averaging signal-level fusion approach by 19.2% and the robust mean super-resolution approach by 8.7%.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causation—rests upon the pursuit of numerous lines of inquiry. The research community has focused on analytical methods development (negative binomial specifications, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might think of different lines of inquiry in terms of ‘low lying fruit’—areas of inquiry that might provide significant improvements in understanding crash causation. It is the contention of this research that omitted variable bias caused by the exclusion of important variables is an important line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant ability to better understand contributing factors to crashes. This study—believed to represent a unique contribution to the safety literature—develops and examines the role of a sizeable set of spatial variables in intersection crash occurrence. In addition to commonly considered traffic and geometric variables, examined spatial factors include local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools. The results indicate that inclusion of these factors results in significant improvement in model explanatory power, and the results also generally agree with expectation. The research illuminates the importance of spatial variables in safety research and also the negative consequences of their omissions.
Resumo:
Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).
Resumo:
Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.
Resumo:
Red light cameras (RLCs) have been used in a number of US cities to yield a demonstrable reduction in red light violations; however, evaluating their impact on safety (crashes) has been relatively more difficult. Accurately estimating the safety impacts of RLCs is challenging for several reasons. First, many safety related factors are uncontrolled and/or confounded during the periods of observation. Second, “spillover” effects caused by drivers reacting to non-RLC equipped intersections and approaches can make the selection of comparison sites difficult. Third, sites selected for RLC installation may not be selected randomly, and as a result may suffer from the regression to the mean bias. Finally, crash severity and resulting costs need to be considered in order to fully understand the safety impacts of RLCs. Recognizing these challenges, a study was conducted to estimate the safety impacts of RLCs on traffic crashes at signalized intersections in the cities of Phoenix and Scottsdale, Arizona. Twenty-four RLC equipped intersections in both cities are examined in detail and conclusions are drawn. Four different evaluation methodologies were employed to cope with the technical challenges described in this paper and to assess the sensitivity of results based on analytical assumptions. The evaluation results indicated that both Phoenix and Scottsdale are operating cost-effective installations of RLCs: however, the variability in RLC effectiveness within jurisdictions is larger in Phoenix. Consistent with findings in other regions, angle and left-turn crashes are reduced in general, while rear-end crashes tend to increase as a result of RLCs.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Identification of hot spots, also known as the sites with promise, black spots, accident-prone locations, or priority investigation locations, is an important and routine activity for improving the overall safety of roadway networks. Extensive literature focuses on methods for hot spot identification (HSID). A subset of this considerable literature is dedicated to conducting performance assessments of various HSID methods. A central issue in comparing HSID methods is the development and selection of quantitative and qualitative performance measures or criteria. The authors contend that currently employed HSID assessment criteria—namely false positives and false negatives—are necessary but not sufficient, and additional criteria are needed to exploit the ordinal nature of site ranking data. With the intent to equip road safety professionals and researchers with more useful tools to compare the performances of various HSID methods and to improve the level of HSID assessments, this paper proposes four quantitative HSID evaluation tests that are, to the authors’ knowledge, new and unique. These tests evaluate different aspects of HSID method performance, including reliability of results, ranking consistency, and false identification consistency and reliability. It is intended that road safety professionals apply these different evaluation tests in addition to existing tests to compare the performances of various HSID methods, and then select the most appropriate HSID method to screen road networks to identify sites that require further analysis. This work demonstrates four new criteria using 3 years of Arizona road section accident data and four commonly applied HSID methods [accident frequency ranking, accident rate ranking, accident reduction potential, and empirical Bayes (EB)]. The EB HSID method reveals itself as the superior method in most of the evaluation tests. In contrast, identifying hot spots using accident rate rankings performs the least well among the tests. The accident frequency and accident reduction potential methods perform similarly, with slight differences explained. The authors believe that the four new evaluation tests offer insight into HSID performance heretofore unavailable to analysts and researchers.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
A substantial body of research is focused on understanding the relationships between socio-demographics, land-use characteristics, and mode specific attributes on travel mode choice and time-use patterns. Residential and commercial densities, inter-mixing of land uses, and route directness in conjunction with transportation performance characteristics interact to influence accessibility to destinations as well as time spent traveling and engaging in activities. This study uniquely examines the activity durations undertaken for out-of-home subsistence; maintenance, and discretionary activities. Also examined are total tour durations (summing all activity categories within a tour). Cross-sectional activities are obtained from household activity travel survey data from the Atlanta Metropolitan Region. Time durations allocated to weekdays and weekends are compared. The censoring and endogeneity between activity categories and within individuals are captured using multiple equations Tobit models. The analysis and modeling reveal that land-use characteristics such as net residential density and the number of commercial parcels within a kilometer of a residence are associated with differences in weekday and weekend time-use allocations. Household type and structure are significant predictors across the three activity categories, but not for overall travel times. Tour characteristics such as time-of-day and primary travel mode of the tours also affect traveler's out-of-home activity-tour time-use patterns.