863 resultados para Shape.
Resumo:
In this work we propose a new indicator to classify the best period for longan fruit harvest, based on measurements of its longitudinal and transversal axis during growth. Shape analysis based on area per volume ratio (AN) and sphericity show that those indicators stabilize after during longan growth period, independently of variety, in a specific environment. As sphericity increases 6% during fruits growth, AN ratio decreases dramatically (75%) closing to maturity, at 120 days after anthesis. The first derivative of A/V ratio indicates three distinct phases that are related to the growth phases of fruits. We believe that those shape indicators could be used to probe the right point of longan fruits maturity in different environments in a quantitative way.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to apply factor analysis to describe lactation curves in dairy buffaloes in order to estimate the phenotypic and genetic association between common latent factors and cumulative milk yield. A total of 31 257 monthly test-day milk yield records from buffaloes belonging to herds located in the state of São Paulo were used to estimate two common latent factors, which were then analysed in a multi-trait animal model for estimating genetic parameters. Estimates of (co)variance components for the two common latent factors and cumulated 270-d milk yield were obtained by Bayesian inference using a multiple trait animal model. Contemporary group, number of milkings per day (two levels) and age of buffalo cow at calving (linear and quadratic) as covariate were included in the model as fixed effects. The additive genetic, permanent environmental and residual effects were included as random effects. The first common latent factor (F1) was associated with persistency of lactation and the second common latent factor (F2) with the level of production in early lactation. Heritability estimates for Fl and F2 were 0.12 and 0.07, respectively. Genetic correlation estimates between El and F2 with cumulative milk yield were positive and moderate (0.63 and 0.52). Multivariate statistics employing factor analysis allowed the extraction of two variables (latent factors) that described the shape of the lactation curve. It is expected that the response to selection to increase lactation persistency is higher than the response obtained from selecting animals to increase lactation peak. Selection for higher total milk yield would result in a favourable correlated response to increase the level of production in early lactation and the lactation persistency.
Resumo:
This paper proposes a different experimental setup compared with the traditional ones, in order to determine the acceleration of gravity, which is carried out by using a fluid at a constant rotation. A computerized rotational system-by using a data acquisition system with specific software, a power amplifier and a rotary motion sensor-is employed in order to evaluate the angular velocity and g. An equation to determine g is inferred from fluid mechanics. For this purpose, the fluid's parabolic shape inside a cylindrical receptacle is considered using a rotational movement.
Resumo:
Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.
Resumo:
The aim of this study was to determine the extent of DNA fragmentation and the presence of denatured single-strand or normal double-strand DNA in spermatozoa with extruded nuclear chromatin (ENC) selected by high magnification. Fresh semen samples from 55 patients were prepared by discontinuous isolate concentration gradient. Spermatozoa with normal nucleus (NN) and ENC were selected at 8400x magnification and placed on different slides. DNA fragmentation was determined by TUNEL assay. Denatured and double-stranded DNA was identified by the acridine orange fluorescence method. DNA fragmentation was not significantly different (p = 0.86) between spermatozoa with ENC (19.6%) and those with NN (20%). However, the percentage of spermatozoa with detectable denatured-stranded DNA in the ENC spermatozoon group (59.1%) was significantly higher (p < 0.0001) than in the NN group (44.9%). The high level of denatured DNA in spermatozoa with ENC suggests premature decondensation and disaggregation of sperm chromatin fibres. The results show an association between ENC and DNA damage in spermatozoa, and support the routine morphological selection and injection of motile spermatozoa at high-magnification intracytoplasmic sperm injection.
Resumo:
Fruit traits evolve in response to an evolutionary triad between plants, seed dispersers, and antagonists that consume fruits but do not disperse seeds. The defense trade-off hypothesis predicts that the composition of nutrients and of secondary compounds in fruit pulp is shaped by a trade-off between defense against antagonists and attraction to seed dispersers. The removal rate model of this hypothesis predicts a negative relationship between nutrients and secondary compounds, whereas the toxin-titration model predicts a positive relationship. To test these alternative models, we evaluated whether the contents of nutrients and secondary compounds can be used to predict fruit removal by mutualists and pathogens in 14 bird-dispersed plants on a subtropical island in São Paulo state, southeastern Brazil. We selected eight to ten individuals of each species and prevented fruit removal by covering four branches with a net and left fruits on four other branches available to both, vertebrate fruit consumers and pathogens. The persistence of ripe fruits was drastically different among species for bagged and open fruits, and all fruit species persisted longer when protected against seed dispersers. We found that those fruits that are quickly removed by vertebrates are nutrient-rich, but although the attack rate of pathogens is also high, these fruits have low contents of quantitative defenses such as tannins and phenols. Thus, we suggest that the fruit removal rate by seed dispersers is the primary factor selecting the levels of fruit defense. Likewise, nutrient-poor fruits have low removal of seed dispersers and low probability of attack by pathogens. These species retain ripe fruits in an intact condition for a prolonged period because they are highly defended by secondary compounds, which reduce overall attractiveness. However, this strategy might be advantageous for plants that depend on rare or unreliable dispersers.
Resumo:
This paper reports the novel application of digital curvature as a feature for morphological characterization and classification of landmark shapes. By inheriting several unique features of the continuous curvature, the digital curvature provides invariance to translations, rotations, local shape deformations, and is easily made tolerant to scaling. In addition, the bending energy, a global shape feature, can be directly estimated from the curvature values. The application of these features to analyse patterns of cranial morphological geographic differentiation in the rodent species Thrichomys apereoides has led to encouraging results, indicating a close correspondence between the geographical and morphological distributions. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
The mammalian scapula is a complex morphological structure, composed of two ossification plates that fuse into a single structure. Most studies on morphological differentiation in the scapula have considered it to be a simple, spatially integrated structure, primarily influenced by the important locomotor function presented by this element. We used recently developed geometric morphometric techniques to test and quantify functional and phylogenetic influences on scapular shape variation in fossil and extant xenarthran mammals. The order Xenarthra is well represented in the fossil record and presents a stable phylogenetic hypothesis for its genealogical history. In addition, its species present a large variety of locomotor habits. Our results show that approximately half of the shape variation in the scapula is due to phylogenetic heritage. This is contrary to the view that the scapula is influenced only by functional demands. There are large-scale shape transformations that provide biomechanical adaptation for the several habits (arboreality, terrestriality, and digging), and small scale-shape transformations (mostly related to the coracoid process) that are not influenced by function. A nonlinear relationship between morphometric and phylogenetic distances indicates the presence of a complex mixture of evolutionary processes acting on shape differentiation of the scapula. J. Morphol. 241,251-263, 1999. (C) 1999 Wiley-Liss, Inc.
Resumo:
The description of patterns of variation in any character system within well-defined species is fundamental for understanding lineage diversification and the identification of geographic units that represent opportunities for sustained evolutionary divergence. In this paper, we analyze intraspecific variation in cranial shape in the Pumpkin Toadlet, Brachycephalus ephippium-a miniaturized species composed of isolated populations on the slopes of the mountain ranges of southeastern Brazil. Shape variables were derived using geometric-statistical methods that describe shape change as localized deformations in a spatial framework defined by anatomical landmarks in the cranium of B. ephippium. By statistically weighting differences between landmarks that are not close together (changes at larger geometric scale), cranial variation among geographic samples of B. ephippium appears continuous with no obvious gaps. This pattern of variation is caused by a confounding effect between within-sample allometry and among-sample shape differences. In contrast, by statistically weighting differences between landmarks that are at close spacing (changes at smaller geometric scale), differences in shape within- and among-sample variation are not confounded, and a marked geographic differentiation among population samples of B. ephippium emerges. The observed pattern of geographic differentiation in cranial shape apparently cannot be explained as isolation-by-distance. This study provides the first evidence that the detection of morphological variation or lack thereof, that is, morphological conservatism, may be conditional on the scale of measurement of variation in shape within the methodological formalism of geometric morphometrics.
Resumo:
A MATHEMATICA notebook to compute the elements of the matrices which arise in the solution of the Helmholtz equation by the finite element method (nodal approximation) for tetrahedral elements of any approximation order is presented. The results of the notebook enable a fast computational implementation of finite element codes for high order simplex 3D elements reducing the overheads due to implementation and test of the complex mathematical expressions obtained from the analytical integrations. These matrices can be used in a large number of applications related to physical phenomena described by the Poisson, Laplace and Schrodinger equations with anisotropic physical properties.
Resumo:
Suppose we have identified three clusters of galaxies as being topological copies of the same object. How does this information constrain the possible models for the shape of our universe? It is shown here that, if our universe has flat spatial sections, these multiple images can be accommodated within any of the six classes of compact orientable three-dimensional flat space forms. Moreover, the discovery of two more triples of multiple images in the neighbourhood of the first one would allow the determination of the topology of the universe, and in most cases the determination of its size.
Resumo:
We present a measurement of the shape of the boson rapidity distribution for p (p) over bar -> Z/gamma(*)-> e(+)e(-)+X events at a center-of-mass energy of 1.96 TeV. The measurement is made for events with electron-positron mass 71 < M-ee < 111 GeV and uses 0.4 fb(-1) of data collected at the Fermilab Tevatron collider with the D0 detector. This measurement significantly reduces the uncertainties on the rapidity distribution in the forward region compared with previous measurements. Predictions of next-to-next-to-leading order (NNLO) QCD are found to agree well with the data over the full rapidity range.