897 resultados para Sexual violence - Role of the school
Resumo:
Este trabajo tiene como objetivo describir la experiencia de implementación y desarrollo del Portal de revistas de la Facultad de Humanidades y Ciencias de Educación de la Universidad Nacional de La Plata a fin de que pueda ser aprovechada por todos aquellos que emprendan iniciativas de características similares. Para ello, se realiza en primer lugar un repaso por la trayectoria de la Facultad respecto a la edición de revistas científicas y la labor bibliotecaria para contribuir a su visualización. En segundo orden, se exponen las tareas llevadas adelante por la Prosecretaría de Gestión Editorial y Difusión (PGEyD) de la Facultad para concretar la puesta en marcha del portal. Se hace especial referencia a la personalización del software, a la metodología utilizada para la carga masiva de información en el sistema (usuarios y números retrospectivos) y a los procedimientos que permiten la inclusión en repositorio institucional y en el catálogo web de todos los contenidos del portal de manera semi-automática. Luego, se hace alusión al trabajo que se está realizando en relación al soporte y a la capacitación de los editores. Se exponen, después, los resultados conseguidos hasta el momento en un año de trabajo: creación de 10 revistas, migración de 4 títulos completos e inclusión del 25de las contribuciones publicadas en las revistas editadas por la FaHCE. A modo de cierre se enuncian una serie de desafíos que la Prosecretaría se ha propuesto para mejorar el Portal y optimizar los flujos de trabajo intra e interinstitucionales
Resumo:
The Iranian textile industry still remains important as one of the largest sources of employment within the non-petroleum sector, although it no longer plays the large role it used in the country's economy (having been replaced by petroleum as the economy's primary industry). The subject of this study are middlemen known as namayande in the Iranian textile industry who plays a very important role in the operations of the innumerable small and medium-sized private firms. When private firms import materials from abroad, namayande make the connections between them and foreign sellers. These middlemen are not local sales agents of foreign companies as is usually the case; rather the namayande specialize in purchasing goods for local buyers. This study will point out some of the reasons why the namayande exist, and examine the present state of Iran's textile industry along with the particular management problems found within the firms' operations.
Resumo:
International agricultural trade has been growing significantly during the last decade. Many countries rely on imports to ensure adequate food supplies to the people. A few are becoming food baskets of the world. This process raises issues about the food security in depending countries and potentially unsustainable land and water use in exporting countries. In this paper, we analyse the impacts of amplified farm trade on natural resources, especially water. Farm exports and imports of five Latin America countries (Brazil, Argentina, Mexico, Peru and Chile) are examined carefully. A preliminary analysis indicates that virtual water imports can save valuable water resources in water-short countries, such as Mexico and Chile. Major exporting countries, including Brazil and Argentina, have become big exporters due to abundant natural resource endowments. The opportunity costs of agricultural production in those countries are identified as being low, because of the predominant green water use. It is concluded that virtual water trade can be a powerful tool to alleviate water stress in semi-arid countries. However, for exporting nations a sustainable water use can only be guaranteed if environmental production costs are fully reflected in the commodity prices. There is no basis for erecting environmental trade tariffs on exporters though. Setting up legal foundations for them in full compliance with WTOs processes would be a daunting task.
Resumo:
The processes of social and urban segregation have got worse during the last decades. Several studies have deepened into the analysis of the causes and consequences of these processes and have tried to define solutions that beyond eradicating some specific problems, were aimed at the consolidation of sustainable urban environments. This paper presents an approach to the problem of urban inequality based on the concept of urban vulnerability as something that goes beyond the social and economic problems. In exclusion processes it is very important to consider the urban context and the physical and structural conditions not only in each neighborhood but also in the city as a whole. The paper seeks to pose a reflection on the urban support, which is understood in all its complexity and thought to be a key to ensure access and the right to the city of the citizens most in need.
Resumo:
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Resumo:
The beam properties of tapered semiconductor optical amplifiers emitting at 1.57 μm are analyzed by means of simulations with a self-consistent steady state electro-optical and thermal simulator. The results indicate that the self-focusing caused by carrier lensing is delayed to higher currents for devices with taper angle slightly higher than the free diffraction angle.
Resumo:
Transverse galloping is here considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which are described by using the quasi-steady hypothesis. The hysteresis of transverse galloping is also analyzed. Approximate solutions of the model are obtained by assuming that the aerodynamic and damping forces are much smaller than the inertial and stiffness ones. The analysis of the approximate solution, which is obtained by means of the method of Krylov–Bogoliubov, reveals the existing link between the hysteresis phenomenon and the number of inflection points at the aerodynamic force coefficient curve, Cy(α)Cy(α); CyCy and αα being, respectively, the force coefficient normal to the incident flow and the angle of attack. The influence of the position of these inflection points on the range of flow velocities in which hysteresis takes place is also analyzed.
Resumo:
Immunolocalization of mannans in the seeds of Brachypodium distachyon reveals the presence of these polysaccharides in the root embryo and in the coleorhiza in the early stages of germination (12h), decreasing thereafter to the point of being hardly detected at 27h. Concurrently, the activity of endo-β-mannanases (MANs; EC 3.2.1.78) that catalyse the hydrolysis of β-1,4 bonds in mannan polymers, increases as germination progresses. The MAN gene family is represented by six members in the Brachypodium genome, and their expression has been explored in different organs and especially in germinating seeds. Transcripts of BdMAN2, BdMAN4 and BdMAN6 accumulate in embryos, with a maximum at 24–30h, and are detected in the coleorhiza and in the root by in situ hybridization analyses, before root protrusion (germination sensu stricto). BdMAN4 is not only present in the embryo root and coleorhiza, but is abundant in the de-embryonated (endosperm) imbibed seeds, while BdMAN2 and BdMAN6 are faintly expressed in endosperm during post-germination (36–42h). BdMAN4 and BdMAN6 transcripts are detected in the aleurone layer. These data indicate that BdMAN2, BdMAN4 and BdMAN6 are important for germination sensu stricto and that BdMAN4 and BdMAN6 may also influence reserve mobilization. Whether the coleorhiza in monocots and the micropylar endosperm in eudicots have similar functions, is discussed.
Resumo:
Allergens come into contact with the immune system as components of a very diverse mixture. The most common sources are pollen grains, food, and waste. These sources contain a variety of immunomodulatory components that play a key role in the induction of allergic sensitization. The way allergen molecules bind to the cells of the immune system can determine the immune response. In order to better understand how allergic sensitization is triggered, we review the molecular mechanisms involved in the development of allergy and the role of immunomodulators in allergen recognition by innate cells.
Resumo:
We investigated actin cytoskeletal and adhesion molecule dynamics during collisions of leading lamellae of nontransformed and oncogene-transformed fibroblasts. By using real-time video microscopy, it was found that during lamellar collision there was considerable overlapping of leading lamellae followed by subsequent retraction. Overlapping of nontransformed fibroblasts was accompanied by formation of β-catenin-positive contact structures organized into strands oriented parallel to the long axis of the cell that were associated with bundles of actin filaments. Maintenance of such cell–cell contact structures critically depended on the contractility of actin cytoskeleton, as inhibition of contractility with serum-free medium or 2,3-butanedione 2-monoxime (BDM) resulted in loss of strand formation. Strand formation was recovered when cells in serum-free medium were incubated with the microtubule inhibitor nocodazole, which is known to increase contractility. Oncogene-transformed fibroblasts reacted to collisions with responses similar to nontransformed fibroblasts but did not develop well-organized cell–cell contacts. A model is presented to describe how differences in the organization of the actin cytoskeleton could account for the structurally distinct responses to cell–cell contact by polarized fibroblastic cells versus nonpolarized epithelial cells.
Resumo:
Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart. A newly recognized adenosine receptor, the A3 subtype, is expressed on the cardiac ventricular cell, and its activation protects the ventricular heart cell against injury during a subsequent exposure to ischemia. A cultured chicken ventricular myocyte model was used to investigate the cardioprotective role of a novel adenosine A3 receptor. The protection mediated by prior activation of A3 receptors exhibits a significantly longer duration than that produced by activation of the adenosine A1 receptor. Prior exposure of the myocytes to brief ischemia also protected them against injury sustained during a subsequent exposure to prolonged ischemia. The adenosine A3 receptor-selective antagonist 3-ethyl 5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) caused a biphasic inhibition of the protective effect of the brief ischemia. The concomitant presence of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) converted the MRS1191-induced dose inhibition curve to a monophasic one. The combined presence of both antagonists abolished the protective effect induced by the brief ischemia. Thus, activation of both A1 and A3 receptors is required to mediate the cardioprotective effect of the brief ischemia. Cardiac atrial cells lack native A3 receptors and exhibit a shorter duration of cardioprotection than do ventricular cells. Transfection of atrial cells with cDNA encoding the human adenosine A3 receptor causes a sustained A3 agonist-mediated cardioprotection. The study indicates that cardiac adenosine A3 receptor mediates a sustained cardioprotective function and represents a new cardiac therapeutic target.
Resumo:
Homologues of the amtB gene of enteric bacteria exist in all three domains of life. Although their products are required for transport of the ammonium analogue methylammonium in washed cells, only in Saccharomyces cerevisiae have they been shown to be necessary for growth at low NH4+ concentrations. We now demonstrate that an amtB strain of Escherichia coli also grows slowly at low NH4+ concentrations in batch culture, but only at pH values below 7. In addition, we find that the growth defect of an S. cerevisiae triple-mutant strain lacking the function of three homologues of the ammonium/methylammonium transport B (AmtB) protein [called methylammonium/ammonium permeases (MEP)] that was observed at pH 6.1 is relieved at pH 7.1. These results provide direct evidence that AmtB participates in acquisition of NH4+/NH3 in bacteria as well as eucarya. Because NH3 is the species limiting at low pH for a given total concentration of NH4+ + NH3, results with both organisms indicate that AmtB/MEP proteins function in acquisition of the uncharged form. We confirmed that accumulation of [14C]methylammonium depends on its conversion to γ-N-methylglutamine, an energy-requiring reaction catalyzed by glutamine synthetase, and found that at pH 7, constitutive expression of AmtB did not relieve the growth defects of a mutant strain of Salmonella typhimurium that appears to require a high internal concentration of NH4+/NH3. Hence, contrary to previous views, we propose that AmtB/MEP proteins increase the rate of equilibration of the uncharged species, NH3, across the cytoplasmic membrane rather than actively transporting—that is, concentrating—the charged species, NH4+.
Resumo:
The dynamic characteristics of reflex eye movements were measured in two strains of chronically prepared mice by using an infrared television camera system. The horizontal vestibulo-ocular reflex (HVOR) and horizontal optokinetic response (HOKR) were induced by sinusoidal oscillations of a turntable, in darkness, by 10° (peak to peak) at 0.11–0.50 Hz and of a checked-pattern screen, in light, by 5–20°at 0.11–0.17 Hz, respectively. The gains and phases of the HVOR and HOKR of the C57BL/6 mice were nearly equivalent to those of rabbits and rats, whereas the 129/Sv mice exhibited very low gains in the HVOR and moderate phase lags in the HOKR, suggesting an inherent sensory-motor anomaly. Adaptability of the HOKR was examined in C57BL/6 mice by sustained screen oscillation. When the screen was oscillated by 10° at 0.17 Hz, which induced sufficient retinal slips, the gain of the HOKR increased by 0.08 in 1 h on average, whereas the stimuli that induced relatively small or no retinal slips affected the gain very little. Lesions of the flocculi induced by local applications of 0.1% ibotenic acid and lesions of the inferior olivary nuclei induced by i.p. injection of 3-acetylpyridine in C57BL/6 mice little affected the dynamic characteristics of the HVOR and HOKR, but abolished the adaptation of the HOKR. These results indicate that the olivo-floccular system plays an essential role in the adaptive control of the ocular reflex in mice, as suggested in other animal species. The data presented provide the basis for analyzing the reflex eye movements of genetically engineered mice.
Resumo:
ClpA, a member of the Clp/Hsp100 family of ATPases, is a molecular chaperone and, in combination with a proteolytic component ClpP, participates in ATP-dependent proteolysis. We investigated the role of ClpA in protein degradation by ClpAP by dissociating the reaction into several discrete steps. In the assembly step, ClpA–ClpP–substrate complexes assemble either by ClpA–substrate complexes interacting with ClpP or by ClpA–ClpP complexes interacting with substrate; ClpP in the absence of ClpA is unable to bind substrates. Assembly requires ATP binding but not hydrolysis. We discovered that ClpA translocates substrates from their binding sites on ClpA to ClpP. The translocation step specifically requires ATP; nonhydrolyzable ATP analogs are ineffective. Only proteins that are degraded by ClpAP are translocated. Characterization of the degradation step showed that substrates can be degraded in a single round of ClpA–ClpP–substrate binding followed by ATP hydrolysis. The products generated are indistinguishable from steady-state products. Taken together, our results suggest that ClpA, through its interaction with both the substrate and ClpP, acts as a gatekeeper, actively translocating specific substrates into the proteolytic chamber of ClpP where degradation occurs. As multicomponent ATP-dependent proteases are widespread in nature and share structural similarities, these findings may provide a general mechanism for regulation of substrate import into the proteolytic chamber.