996 resultados para Series compensation
Resumo:
http://www.archive.org/details/hindrancestothew00unknuoft
Resumo:
http://books.google.com/books?id=plhkPFrJ1QUC&dq=law+and+custom+of+slavery+in+British+India
Resumo:
http://www.archive.org/details/westernmissionsa00smetrich
Resumo:
http://www.archive.org/details/divineenterprise00pieruoft
Resumo:
Studies suggest that income replacement is low for many workers with serious occupational injuries and illnesses. This review discusses three areas that hold promise for raising benefits to workers while reducing workers' compensation costs to employers: improving safety, containing medical costs, and reducing litigation. In theory, workers' compensation increases the costs to employers of injuries and so provides incentives to improve safety. Yet, taken as a whole, research does not provide convincing evidence that workers' compensation reduces injury rates. Moreover, unlike safety and health regulation, workers' compensation focuses the attention of employers on individual workers. High costs may lead employers to discourage claims and litigate when claims are filed. Controlling medical costs can reduce workers' compensation costs. Most studies, however, have focused on costs and have not addressed the effectiveness of medical care or patient satisfaction. Research also has shown that workers' compensation systems can reduce the need for litigation. Without litigation, benefits can be delivered more quickly and at lower costs.
Resumo:
Background: Until recently, little was known about the costs of the HIV/AIDS epidemic to businesses in Africa and business responses to the epidemic. This paper synthesizes the results of a set of studies conducted between 1999 and 2006 and draws conclusions about the role of the private sector in Africa’s response to AIDS. Methods: Detailed human resource, financial, and medical data were collected from 14 large private and parastatal companies in South Africa, Uganda, Kenya, Zambia, and Ethiopia. Surveys of small and medium-sized enterprises (SMEs) were conducted in South Africa, Kenya, and Zambia. Large companies’ responses or potential responses to the epidemic were investigated in South Africa, Uganda, Kenya, Zambia, and Rwanda. Results: Among the large companies, estimated workforce HIV prevalence ranged from 5%¬37%. The average cost per employee lost to AIDS varied from 0.5-5.6 times the average annual compensation of the employee affected. Labor cost increases as a result of AIDS were estimated at anywhere from 0.6%-10.8% but exceeded 3% at only 2 of 14 companies. Treatment of eligible employees with ART at a cost of $360/patient/year was shown to have positive financial returns for most but not all companies. Uptake of employer-provided testing and treatment services varied widely. Among SMEs, HIV prevalence in the workforce was estimated at 10%-26%. SME managers consistently reported low AIDS-related employee attrition, little concern about the impacts of AIDS on their companies, and relatively little interest in taking action, and fewer than half had ever discussed AIDS with their senior staff. AIDS was estimated to increase the average operating costs of small tourism companies in Zambia by less than 1%; labor cost increases in other sectors were probably smaller. Conclusions: Although there was wide variation among the firms studied, clear patterns emerged that will permit some prediction of impacts and responses in the future.
Resumo:
Background: The loss of working-aged adults to HIV/AIDS has been shown to increase the costs of labor to the private sector in Africa. There is little corresponding evidence for the public sector. This study evaluated the impact of AIDS on the capacity of a government agency, the Zambia Wildlife Authority (ZAWA), to patrol Zambia’s national parks. Methods: Data were collected from ZAWA on workforce characteristics, recent mortality, costs, and the number of days spent on patrol between 2003 and 2005 by a sample of 76 current patrol officers (reference subjects) and 11 patrol officers who died of AIDS or suspected AIDS (index subjects). An estimate was made of the impact of AIDS on service delivery capacity and labor costs and the potential net benefits of providing treatment. Results: Reference subjects spent an average of 197.4 days on patrol per year. After adjusting for age, years of service, and worksite, index subjects spent 62.8 days on patrol in their last year of service (68% decrease, p<0.0001), 96.8 days on patrol in their second to last year of service (51% decrease, p<0.0001), and 123.7 days on patrol in their third to last year of service (37% decrease, p<0.0001). For each employee who died, ZAWA lost an additional 111 person-days for management, funeral attendance, vacancy, and recruitment and training of a replacement, resulting in a total productivity loss per death of 2.0 person-years. Each AIDS-related death also imposed budgetary costs for care, benefits, recruitment, and training equivalent to 3.3 years’ annual compensation. In 2005, AIDS reduced service delivery capacity by 6.2% and increased labor costs by 9.7%. If antiretroviral therapy could be provided for $500/patient/year, net savings to ZAWA would approach $285,000/year. Conclusion: AIDS is constraining ZAWA’s ability to protect Zambia’s wildlife and parks. Impacts on this government agency are substantially larger than have been observed in the private sector. Provision of ART would result in net budgetary savings to ZAWA and greatly increase its service delivery capacity.
Resumo:
A new approach is proposed for clustering time-series data. The approach can be used to discover groupings of similar object motions that were observed in a video collection. A finite mixture of hidden Markov models (HMMs) is fitted to the motion data using the expectation-maximization (EM) framework. Previous approaches for HMM-based clustering employ a k-means formulation, where each sequence is assigned to only a single HMM. In contrast, the formulation presented in this paper allows each sequence to belong to more than a single HMM with some probability, and the hard decision about the sequence class membership can be deferred until a later time when such a decision is required. Experiments with simulated data demonstrate the benefit of using this EM-based approach when there is more "overlap" in the processes generating the data. Experiments with real data show the promising potential of HMM-based motion clustering in a number of applications.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of over-fitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.
Resumo:
Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.
Resumo:
The development of ultra high speed (~20 Gsamples/s) analogue to digital converters (ADCs), and the delayed deployment of 40 Gbit/s transmission due to the economic downturn, has stimulated the investigation of digital signal processing (DSP) techniques for compensation of optical transmission impairments. In the future, DSP will offer an entire suite of tools to compensate for optical impairments and facilitate the use of advanced modulation formats. Chromatic dispersion is a very significant impairment for high speed optical transmission. This thesis investigates a novel electronic method of dispersion compensation which allows for cost-effective accurate detection of the amplitude and phase of the optical field into the radio frequency domain. The first electronic dispersion compensation (EDC) schemes accessed only the amplitude information using square law detection and achieved an increase in transmission distances. This thesis presents a method by using a frequency sensitive filter to estimate the phase of the received optical field and, in conjunction with the amplitude information, the entire field can be digitised using ADCs. This allows DSP technologies to take the next step in optical communications without requiring complex coherent detection. This is of particular of interest in metropolitan area networks. The full-field receiver investigated requires only an additional asymmetrical Mach-Zehnder interferometer and balanced photodiode to achieve a 50% increase in EDC reach compared to amplitude only detection.
Resumo:
Long reach passive optical networks (LR-PONs), which integrate fibre-to-the-home with metro networks, have been the subject of intensive research in recent years and are considered one of the most promising candidates for the next generation of optical access networks. Such systems ideally have reaches greater than 100km and bit rates of at least 10Gb/s per wavelength in the downstream and upstream directions. Due to the limited equipment sharing that is possible in access networks, the laser transmitters in the terminal units, which are usually the most expensive components, must be as cheap as possible. However, the requirement for low cost is generally incompatible with the need for a transmitter chirp characteristic that is optimised for such long reaches at 10Gb/s, and hence dispersion compensation is required. In this thesis electronic dispersion compensation (EDC) techniques are employed to increase the chromatic dispersion tolerance and to enhance the system performance at the expense of moderate additional implementation complexity. In order to use such EDC in LR-PON architectures, a number of challenges associated with the burst-mode nature of the upstream link need to be overcome. In particular, the EDC must be made adaptive from one burst to the next (burst-mode EDC, or BM-EDC) in time scales on the order of tens to hundreds of nanoseconds. Burst-mode operation of EDC has received little attention to date. The main objective of this thesis is to demonstrate the feasibility of such a concept and to identify the key BM-EDC design parameters required for applications in a 10Gb/s burst-mode link. This is achieved through a combination of simulations and transmission experiments utilising off-line data processing. The research shows that burst-to-burst adaptation can in principle be implemented efficiently, opening the possibility of low overhead, adaptive EDC-enabled burst-mode systems.
Resumo:
It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain