735 resultados para Sensor Fusion
Resumo:
A reliable and fast sensor for in vitro evaluation of solar protection factors (SPFs) of cosmetic products, based on the photobleaching kinetics of a nanocrystalline TiO(2)/dye UV-dosimeter, has been devised. The accuracy, robustness and suitability of the new device was demonstrated by the excellent matching of the predicted and the in vivo results up to SPF 70, for four standard samples analyzed in blind. These results strongly suggest that our device can be useful for routine SPF evaluation in laboratories devoted to the development or production of cosmetic formulations, since the conventional in vitro methods tend to exhibit unacceptably high errors above SPF similar to 30 and the conventional in vivo methods tend to be expensive and exceedingly time consuming. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Vanadium pentoxide xerogels (VXG) incorporating meso(3- and 4-pyridyl)porphyrin cobalt(III) species coordinated to four [Ru(bipy)(2)Cl](+) complexes were employed as gas sensing materials capable of detecting small amounts of water in commercial ethanol and fuel supplies. According to their X-ray diffraction data, the original VXG lamellar framework was maintained in the nanocomposite material, but the interlamellar distance increased from 11.7 to 15.2 angstrom, reflecting the intercalation of the porphyrin species into the vanadium pentoxide matrix. The films generated by direct deposition of the nanocomposite aqueous suspensions exhibited good electrical and electrochemical performance for application in resistive sensors. The analysis of water in ethanol and fuels was carried out successfully using an especially designed electric setup incorporating a laminar gas flow chamber and interdigitated gold electrodes coated with the nanocomposites. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 mu g of sample. The in situ fusion was accomplished using 10 mu L of a flux mixture 4.0% m/v Na(2)CO(3) + 4.0% m/v ZnO + 0.1% m/v Triton (R) X-100 added over the cement sample and heated at 800 degrees C for 20 s. The resulting mould was completely dissolved with 10 mu L of 0.1% m/v HNO(3). Limits of detection were 0.11 mu g g(-1) for Co, 1.1 mu g g(-1) for Cr and 1.9 mu g g(-1) for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student`s t-test, p<0.05). In general, the relative standard deviation was lower than 12% (n = 5). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A novel poly(p-xylylene), PPX, derivative bearing phenyl side groups was electrochemically synthesized in 85% yield. The polymer, poly(2-phenyl-p-xylylene) (PPPX), presented a major fraction (88%) soluble in common organic solvents. It showed to be thermally resistant up to 140 degrees C. UV-VIS analysis revealed an Egap of similar to 3.0 eV. Gas sensors made from thin films of CSA doped PPPX deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five carbonyl compounds: acetaldehyde, propionaldehyde. benzaldehyde, acetone and butanone. Three-dimensional plots of relative response vs. time of half-response vs. time of half-recovery showed good discrimination between the five carbonyl Compounds tested. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper we describe the electrosynthesis of poly[(2-bromo-5-hexyloxy- 1,4-phenylenevinylene)-co-(1,4-phenylenevinylene)] (BHPPV-co-PPV), a novel conducting copolymer, and its application as active layer of a chemiresistive gas sensor suitable for quantification of ethanol present in ethanol-gasoline mixtures normally present in the fuel tanks of flex-fuel vehicles. This information is crucial for the smooth operation of the engine since it permits optimal air:fuel ratio regulation. The sensor consists of an interdigitated electrode coated with a thin polymer film doped with dodecylbenzenesulfonic acid. On exposure to fuel vapours at room temperature, the device presents a linear correlation between its electrical conductance and the ethanol concentration in the fuel. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The vibrational spectroscopic characterization of a sulfur dioxide visual sensor was carried out using a Raman microscope system. It was observed the formation of two distinct complexes, that were characterized by the position and relative intensities of the bands assigned to the symmetric stretching, nu(s)(SO(2)),of the linked SO(2) molecules. In fact, in the yellowish orange complex, that corresponds to the 1:1 stoichiometry, only one band is observed, assigned to nu(s)(SO(2)) at ca. 1080 cm-(1) and, in the deep red complex, that corresponds to the 1:2 complex, at ca. 1070 and 1090 cm(-)1 are observed. The variation of the relative intensities of the bands assigned to nu(s)(SO(2)) present in the Ni(II)center dot SO(2) complex, in different points of the sample, shows clearly the requirement of the Raman microscope in the vibrational characterization of this kind of molecular sensor. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A dynamic atmosphere generator with a naphthalene emission source has been constructed and used for the development and evaluation of a bioluminescence sensor based on the bacteria Pseudomonas fluorescens HK44 immobilized in 2% agar gel (101 cell mL(-1)) placed in sampling tubes. A steady naphthalene emission rate (around 7.3 nmol min(-1) at 27 degrees C and 7.4 mLmin(-1) of purified air) was obtained by covering the diffusion unit containing solid naphthalene with a PTFE filter membrane. The time elapsed from gelation of the agar matrix to analyte exposure (""maturation time"") was found relevant for the bioluminescence assays, being most favorable between 1.5 and 3 h. The maximum light emission, observed after 80 min, is dependent on the analyte concentration and the exposure time (evaluated between 5 and 20 min), but not on the flow rate of naphthalene in the sampling tube, over the range of 1.8-7.4 nmol min(-1). A good linear response was obtained between 50 and 260 nmol L-1 with a limit of detection estimated in 20 nmol L-1 far below the recommended threshold limit value for naphthalene in air. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel poly(p-xylylene), PPX, derivative bearing alkoxyphenyl side groups was electrochemically synthesized in 87% yield. The polymer, poly(4`-hexyloxy-2,5-biphenyleneethylene) (PHBPE), presented a fraction (92%) soluble in common organic solvents. It showed to be thermally resistant up to 185 degrees C. UV-vis analysis revealed an E-gap of 3.5 eV Gas sensors made from thin films of 10-camphorsulfonic acid-doped PHBPE deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five VHOCs: 1,2-dichloroethane, bromochloromethane, trichloromethane, dichloromethane and tetrachloromethane. The conductance decreased after exposure to tetrachloromethane and increased after exposure to all the other VHOCs. Three-dimensional plots of relative response versus time of half response versus time of half recovery showed good discrimination between the five VHOCs tested. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The modification of a gold electrode surface by electropolymerization of trans-[Ru(NH(3))(4)(Ist)SO(4)](+) to produce an electrochemical sensor for nitric oxide was investigated. The influence of dopamine, serotonin and nitrite as interferents for NO detection was also examined using square-wave voltammetry (SWV). The characterization of the modified electrode was carried out by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and SERS techniques. The gold electrode was successfully modified by the trans-[Ru(NH(3))(4)(Ist)SO(4)](+) complex ion using cyclic voltammetry. The experiments show that a monolayer of the film is achieved after ten voltammetric cycles, that NO in solution can coordinate to the metal present in the layer, that dopamine, serotonin and nitrite are interferents for the detection of NO, and that the response for the nitrite is much less significant than the responses for dopamine and serotonin. The proposed modified electrode has the potential to be applied as a sensor for NO. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A biomimetic sensor is proposed as a promising new analytical method for determination of captopril in different classes of samples. The sensor was prepared by modifying a carbon paste electrode with iron (II) phthalocyanine bis(pyridine) [FePe(dipy)] complex. Amperometric measurements in a batch analytical mode were first carried out in order to optimize the sensor response. An applied potential lower than 0.2 V vs Ag vertical bar AgCl in 0.1 mol L(-1) of TRIS buffer at pH 8.0 provided the best response, with a linear range of 2.5 x 10(-5) to 1.7 x 10(-4) mol L(-1). A detailed investigation of the selectivity of the sensor, employing seventeen other drugs, was also performed. Recovery studies were carried out using biological and environment samples in order to evaluate the sensor`s potential for use with these sample classes. Finally, the performance of the biomimetic sensor was optimized in a flow injection (FIA) system using a wall jet electrochemical cell. Under optimized flow conditions, a broad linear response range, from 5.0 x 10(-4) to 2.5 x 10(-2) mol L(-1), was obtained for captopril, with a sensitivity of 210 +/- 1 mu A L mol(-1).
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.
Resumo:
Uma definição confiável dos requisitos de um software depende diretamente da completa e correta compreensão sobre as necessidades do sistema e sua conseqüente representação de forma adequada ao processo de desenvolvimento. Uma proposta de modelagem de requisitos deve apresentar qualidades que colaborem para a compreensão mútua das necessidades entre os envolvidos no processo e que organizem os requisitos de forma a permitir o acompanhamento no desenvolvimento do software. O presente trabalho apresenta um modelo de estruturação de requisitos fundamentado em metodologias orientadas a objetivos com utilização de cenários e preceitos da Teoria da Atividade. O modelo tem sua argumentação nas premissas que cliente e usuários normalmente expressam suas necessidades através de objetivos almejados e que a ação humana deve ser analisada dentro de um contexto para que possa fazer sentido e ser compreendida. Inserido no contexto do Projeto FILM1, cujo objetivo é expandir o Método Fusion, agregando uma etapa de modelagem de requisitos, o trabalho estabeleceu a qualidade de usabilidade como motivadora da definição de um modelo de estruturação de requisitos. A usabilidade é uma qualidade que visa facilitar a utilização do modelo como uma ferramenta de representação dos requisitos de forma inteligível, atuando tanto na especificação dos requisitos como na validação dos mesmos entre os envolvidos. Os requisitos são estruturados segundo uma abordagem voltada aos clientes e usuários do sistema. O modelo definido tem por objetivo prover a construção gradual e incremental do entendimento compartilhado entre os envolvidos sobre os domínios do problema e da solução, na concepção e no desenvolvimento do software. Metodologias orientadas a objetivos, operacionalizadas através de cenários, conjugadas a princípios da atividade oferecem um suporte adequado a estruturação de requisitos provendo usabilidade ao modelo. A avaliação da aplicabilidade do modelo é realizada com a modelagem de requisitos em três estudos de casos. Em cada caso são aplicadas técnicas de elicitação no sentido da afinar a sintonia com a estrutura do modelo de requisitos. A concepção do modelo, embasada em conceitos da Teoria da Atividade, é bastante adequado às atividades de elicitação em uma abordagem voltada aos clientes e usuários.
Resumo:
Este trabalho descreve um estudo e desenvolvimento de um sensor de dióxido de carbono (CO2), de baixo custo, para monitoramento da qualidade do ar em ambientes climatizados. O sensor aqui proposto baseia-se na técnica de absorção em infravermelho não dispersivo (NDIR). Este trabalho avalia alguns métodos já empregados e propõe um modelo alternativo visando uma solução de baixo custo que possa ser incorporada a sistemas de monitoramento e/ou condicionamento existentes, permitindo o controle do teor de CO2. A metodologia inclui o estudo dos diferentes tipos de sensores de CO2, a seleção da técnica mais apropriada para medição, o estudo das alternativas para implementação da técnica selecionada, o desenvolvimento, testes e avaliações da solução. Especificamente desenvolveu-se uma solução em termos de sensor de CO2 que utiliza componentes comerciais, sendo facilmente reprodutível e de custo reduzido. O sensor desenvolvido tem faixa de medição entre 330 a mais de 10000 ppm, com resolução estimada em torno de 20 a 30 ppm, com erro em relação ao padrão menor que 10% da medição ou 150 ppm,o que for maior.