946 resultados para Scanning electronic microscopy


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In socio-environmental scenario increased the nature resources concern beyond products and subproducts reuse. Recycling is the approach for a material or energy reintroducing in productive system. This method allows the reduction of garbage volume dumped in environment, saving energy and decreasing the requirement of natural resources use. In general, the ending of expanded polystyrene is deposited sanitary landfills or garbage dumps without control that take large volume and spreads easily by aeolian action, with consequently environmental pollution, however, the recycling avoids their misuse and the obtainment from petroleum is reduced. This work recycled expanded polystyrene via merger and/or dissolution by solvents for the production of integrated circuits boards. The obtained material was characterized in flexural mode according to ASTM D 790 and results were compared with phenolite, traditionally used. Specimens fractures were observed by electronic microscopy scanning in order to establish patterns. Expanded Polyestirene recycled as well as phenolite were also thermo analyzed by TGA and DSC. The method using dissolution produced very brittle materials. The method using merger showed no voids formation nor increased the brittleness of the material. The recycled polystyrene presented a strength value significantly lower than that for the phenolite. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work aims the preparation of filmes of strontium-doped lanthanum manganite (perovskita) yttria-stabilized zirconia (LSM-SDC) films deposited on substrate of YSZ by means of spin coating technique having as principal objective their application to solid oxide fuel cells of intermediate temperature. La0,8Sr0,2MnO3 and Ce0,8Sm0,2O1,9 were obtained by modified Pechini method by use of gelatin which act as polymerization agent. The powders obtained were characterized by Xray fluorescence, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The results obtained by X-ray fluorescence showed that the route adopted for obtention of powders was effective in the obtention of the compositions with close values to the stoichiometrics. Ethyl cellulose was used as pore-forming agent and mixed with the LSM-SDC powders in weight proportions of 1:24, 2:23 and 1:9. The films were sintered at 1150 °C for 4 h and characterized by X-ray diffraction and scanning electron microscopy technique (SEM) and atomic force. The phases quantification of the precursory powders and of the obtained films was carried through Rietveld method. According with the analysis of SEM, as the content of ethyl cellulose was increased, the pore distribution in films become more uniform and the pore size reduced. The methodology used for the obtention of the films was very efficient, considering a material was obtained with characteristics that were proper to the application as electrolyte/cathode system to solid oxide fuel cells

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ceramic powders based on oxides of perovskite-type structure is of fundamental interest nowadays, since they have important ionic-electronic conductivity in the use of materials with technological applications such as gas sensors, oxygen permeation membranes, catalysts and electrolytes for solid oxide fuel cells (SOFC). The main objective of the project is to develop nanostructured ceramic compounds quaternary-based oxide Barium (Br), Strontium (Sr), Cobalt (Co) and Iron (Fe). In this project were synthesized compounds BaxSr(1-x)Co0, 8Fe0,2O3- (x = 0.2, 0.5 and 0.8) through the oxalate co-precipitation method. The synthesized powders were characterized by thermogravimetric analysis and differential thermal analysis (TGADTA), X-ray diffraction (XRD) with the Rietveld refinement using the software MAUD and scanning electron microscopy (SEM). The results showed that the synthesis technique used was suitable for production of nanostructured ceramic solid solutions. The powders obtained had a crystalline phase with perovskite-type structure. The TGA-DTA results showed that the homogeneous phase of interest was obtained temperature above 1034°C. It was also observed that the heating rate of the calcination process did not affect the elimination of impurities present in the ceramic powder. The variation in the addition of barium dopant promoted changes in the average crystallite size in the nanometer range, the composition being BSCF(5582) obtained the lowest value (179.0nm). The results obtained by oxalate co-precipitation method were compared with those synthesis methods in solid state and EDTA-citrate method

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: the aim of the present study was to compare the effects of Er:YAG and diode laser treatments of the root surface on intrapulpal temperature after scaling and root planing with hand instruments.Methods: Fifteen extracted single-rooted teeth were scaled and root planed with hand instruments. The teeth were divided into 3 groups of 5 each and irradiated on their buccal and lingual surfaces: group A: Er:YAG laser, 2.94 mum/100 mJ/10 Hz/ 30 seconds; group B: diode laser, 810 nm/1.0 W/0.05 ms/30 seconds; group C: diode laser, 810 nm/1.4 W/0.05 ms/30 seconds. The temperature was monitored by means of a type T thermocouple (copper-constantan) positioned in the pulp chamber to assess pulpal temperature during and before irradiation. Afterwards, the specimens were longitudinally sectioned, and the buccal and lingual surfaces of each root were analyzed by scanning electron microscopy.Results: In the Er:YAG laser group, the thermal analysis revealed an average temperature of -2.2 +/- 1.5degreesC, while in the diode laser groups, temperatures were 1.6 +/- 0.8degreesC at 1.0 W and 3.3 +/- 1.0degreesC at 1.4 W. Electronic micrographs revealed that there were no significant morphological changes, such as charring, melting, or fusion, in any group, although the specimens were found to be more irregular in the Er:YAG laser group.Conclusions: the application of Er:YAG and diode lasers at the utilized parameters did not induce high pulpal temperatures. Root surface irregularities were more pronounced after irradiation with an Er:YAG laser than with a diode laser.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluated comparatively by scanning electron microscopy (SEM) the effect of different dental conditioners on dentin micromorphology, when used according to the same protocol. Forty dentin sticks were obtained from 20 caries-free third human molars and were assigned to 4 groups corresponding to 3 conditioners (phosphoric acid 37%, Clearfil SE Bond and iBond) and an untreated control group. After application of the conditioners, the specimens were immersed in 50% ethanol solution during 10 s, chemically fixed and dehydrated to prepare them to SEM analysis. In the control group, dentin surface was completely covered by smear layer and all dentinal tubules were occluded. In the phosphoric acid-etched group, dentin surface was completely clean and presented exposed dentinal tubule openings; this was the only group in which the tubules exhibited the funnel-shaped aspect. In the groups conditioned with Clearfil SE Bond primer and iBond, which are less acidic than phosphoric acid, tubule openings were occluded or partially occluded, though smear layer removal was observed. SE Bond was more efficient in removing the smear layer than iBond. In the Clearfil SE Bond group, the cuff-like aspect of peritubular dentin was more evident. It may be concluded all tested conditioners were able to change dentin morphology. However, it cannot be stated that the agent aggressiveness was the only cause of the micromorphological alterations because a single morphological pattern was not established for each group, but rather an association of different aspects, according to the aggressiveness of the tested conditioner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different secondary caries models may present different results. The purpose of this study was to compare different in vitro secondary caries models, evaluating the obtained results by polarized-light microscopy (PLM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Standardized human enamel specimens (n = 12) restored with different materials (Z250 conventional composite resin-CRZ, Freedom polyacid-modified composite resin-CRF, Vitremer resin-modified glass-ionomer-GIV, and Fuji IX conventional glass-ionomer cement-GIF) were submitted to microbiological (MM) or chemical caries models (CM). The control group was not submitted to any caries model. For MM, specimens were immersed firstly in sucrose broth inoculated with Streptococcus mutans ATCC 35688, incubated at 37 degrees C/5% CO(2) for 14 days and then in remineralizing solution for 14 days. For CM, specimens were submitted to chemical pH-cycling. Specimens were ground, submitted to PLM and then were dehydrated, gold-sputtered and submitted to SEM and EDS. Results were statistically analyzed by Kruskall-Wallis and Student-Newman-Keuls tests (alpha = 0.05). No differences between in vitro caries models were found. Morphological differences in enamel demineralization were found between composite resin and polyacid-modified composite resin (CRZ and CRF) and between the resin-modified glass-ionomer and the glass-ionomer cement (GIF and GIV). GIF showed higher calcium concentration and less demineralization, differing from the other materials. In conclusion, the glass-ionomer cement showed less caries formation under both in vitro caries models evaluated. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 90B: 635-640, 2009

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Secondary caries is the main cause of direct restoration replacement. The purpose of this study was to analyze enamel adjacent to different restorative materials after in situ cariogenic challenge using polarized-light microscopy (PLM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS). Twelve volunteers, with a low level of dental plaque, a low level of mutans streptococci, and normal salivary flow, wore removable palatal acrylic appliances containing enamel specimens restored with Z250 composite, Freedom composite, Fuji IX glass-ionomer cement, or Vitremer resin-modified glass-ionomer for 14 days. Volunteers dripped one drop of 20% sucrose solution (n = 10) or distilled water (control group) onto each specimen 8 times per day. Specimens were removed from the appliances and submitted to PLM for examination of the lesion area (in mm(2)), followed by dehydration, gold-sputtering, and submission to SEM and EDS. The calcium (Ca) and phosphorus (P) contents were evaluated in weight per cent (%wt). Differences were found between Z250 and Vitremer, and between Z250 and FujiIX, when analyzed using PLM. Energy-dispersive X-ray analysis results showed differences between the studied materials regarding Ca %wt. In conclusion, enamel adjacent to glass-ionomer cement presented a higher Ca %wt, but this material did not completely prevent enamel secondary caries under in situ cariogenic challenge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: the Nd:YAG laser irradiation of dental enamel was evaluated in enamel demineralization experiments in a Streptococcus mutans culture media. Summary Background Data: Previous studies had shown that a continuous wave Nd:YAG laser at an energy of approximately 67 mJ may induce an increased acid resistance in human dental enamel when exposed to severe demineralization conditions. Methods: Enamel windows of 3 x 4 cm in the buccal surface were irradiated with a continuous wave Nd:YAG laser at a wavelength of 1,064 Ecm using energy densities of from 83.75 to 187.50 J/cm(2), Enamel windows of 3 x 4 cm on the lingual surface served as control (without the laser irradiation). The enamel windows were then exposed to a Streptococcus mutans culture media at a temperature of 37 degrees C for 15 and 21 days. The laser effects and demineralization were examined both by optical microscopy and scanning electron microscopy (SEM), Results: A comparison between the lased and the unlased windows of enamel showed fusion and recrystalization of the enamel and increased acid-resistance in all groups irradiated with the Nd:YAG laser, on the other hand, the 3 x 4 delimited enamel surfaces from the control group (not irradiated with the Nd:YAG laser) showed 100% deminerization, Conclusions: These findings are consistent with the finding that laser irradiation of dental results in significant reduction of the effective solubility of enamel mineral.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)