947 resultados para SURFACE PLASMON RESONANCE
Resumo:
We have shown that 44 amino acid residues N-terminal segment of kappa-casein exhibits considerable a-helical structure. This prompted us to investigate the structures of the remaining segments of kappa-casein. Thus, in this study the chemical synthesis and structure elucidation of the peptide 45-87 amino acid residues of kappa-casein is reported. The peptide was assembled using solid phase peptide synthesis methodology on pam resin, cleaved via HF, freeze dried and, after purification, characterised by mass spectrometry (observed m/z 4929; calculated mit 4929.83). The amino acid sequence of the peptide is: CKPVALINNQFLPYPYYAKPAAVRSPAQILQWQVLSNTVPAKA Its structure elucidation has been carried out using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. CD spectrum of the peptide shows it to be a random structure in water but in 30% trifluoroethanol the peptide exhibits considerable structure. The 1D and 2D NMR spectra corroborated the results of CD. The structure elucidation of the peptide using TOCSY and NOESY NMR techniques will be discussed.
Resumo:
Magnetic resonance imaging (MRI) relies on the physical properties of unpaired protons in tissues to generate images. Unpaired protons behave like tiny bar magnets and will align themselves in a magnetic field. Radiofrequency pulses will excite these aligned protons to higher energy states. As they return to their original state, they will release this energy as radio waves. The frequency of the radio waves depends on the local magnetic field and by varying this over a subject, it is possible to build the images we are familiar with. In general, MRI has not been sufficiently sensitive or specific in the assessment of diffuse liver disease for clinical use. However, because of the specific characteristics of fat and iron, it may be useful in the assessment of hepatic steatosis and iron overload. Magnetic resonance imaging is useful in the assessment of focal liver disease, particularly in conjunction with contrast agents. Haemangiomas have a characteristic bright appearance on T-2 weighted images because of the slow flowing blood in dilated sinusoids. Focal nodular hyperplasia (FNH) has a homogenous appearance, and enhances early in the arterial phase after gadolinium injection, while the central scar typically enhances late. Hepatic adenomas have a more heterogenous appearance and also enhance in the arterial phase, but less briskly than FNH. Hepatocellular carcinoma is similar to an adenoma, but typically occurs in a cirrhotic liver and has earlier washout of contrast. The appearance of metastases depends on the underlying primary malignancy. Overall, MRI appears more sensitive and specific than computed tomography with contrast for the detection and evaluation of malignant lesions. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
Magnetic resonance cholangiography (MRC) relies on the strong T-2 signal from stationary liquids, in this case bile, to generate images. No contrast agents are required, and the failure rate and risk of serious complications is lower than with endoscopic retrograde cholangiopancreatography (ERCP). Data from MRC can be summated to produce an image much like the cholangiogram obtained by using ERCP. In addition, MRC and conventional MRI can provide information about the biliary and other anatomy above and below a biliary obstruction. This provides information for therapeutic intervention that is probably most useful for hilar and intrahepatic biliary obstruction. Magnetic resonance cholangiography appears to be similar to ERCP with respect to sensitivity and specificity in detecting lesions causing biliary obstruction, and in the diagnosis of choledocholithiasis. It is also suited to the assessment of biliary anatomy (including the assessment of surgical bile-duct injuries) and intrahepatic biliary pathology. However, ERCP can be therapeutic as well as diagnostic, and MRC should be limited to situations where intervention is unlikely, where intrahepatic or hilar pathology is suspected, to delineate the biliary anatomy prior to other interventions, or after failed or inadequate ERCP. Magnetic resonance angiography (MRA) relies on the properties of flowing liquids to generate images. It is particularly suited to assessment of the hepatic vasculature and appears as good as conventional angiography. It has been shown to be useful in delineating vascular anatomy prior to liver transplantation or insertion of a transjugular intrahepatic portasystemic shunt. Magnetic resonance angiography may also be useful in predicting subsequent variceal haemorrhage in patients with oesophageal varices. (C) 2000 Blackwell Science Asia Pty Ltd.
Resumo:
Mesoporous Mobil catalytic materials of number 41 (MCM-41) silica was chemically modified using both inorganic and organic precursors and characterized using the techniques, XRD, XPS, MAS NMR, FTIR, W-Vis, and physical adsorption of nitrogen, hydrocarbons (hexane, benzene, acetone, and methanol) and water vapor. Modification using organic reagents was found to result in a significant loss in porosity and a shape change of surface properties (increased hydrophobicity and decreased acidity). With inorganic modifying reagents, the decrease in porosity was also observed while the surface properties were not significantly altered as reflected by the adsorption isotherms of organics and water vapors. Chemical modifications can greatly improve the hydrothermal stability of MCM-41 material because of the enhanced surface hydrophobicity (with organic modifiers) or increased pore wall thickness (with inorganic modifiers). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Ischaemic preconditioning in rats was studied using MRI. Ischaemic preconditioning was induced, using an intraluminal filament method, by 30 min middle cerebral artery occlusion (MCAO), and imaged 24 h later. The secondary insult of 100 min MCAO was induced 3 days following preconditioning and imaged 24 and 72 h later. Twenty four hours following ischaemic preconditioning most rats showed small sub-cortical hyperintense regions not seen in sham-preconditioned rats. Twenty-four hours and 72 h following the secondary insult preconditioned animals showed significantly smaller lesions (24 h = 112 +/- 31 mm(3), mean +/- standard error; 72 h = 80 +/- 35 mm(3)) which were confined to the striatum, than controls (24 h = 234 +/- 32 mm(3), p = 0.026; 72 h = 275 +/- 37 mm(3), p = 0.003). In addition during Lesion maturation from 24 to 72 h post-secondary MCAO, preconditioned rats displayed an average reduction in lesion size as measured by MRI whereas sham-preconditioned rats displayed increases in lesion size; this is the first report of such differential lesion volume evolution in cerebral ischaemic preconditioning. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48. and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet-visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
Field-swept pulsed electron paramagnetic resonance (EPR) spectra of a ZBLAN fluoride glass doped with a low concentration of Cr3+ are obtained using echo-detected EPR and hole-burning free induction decay detection. We review the utility of the pulsed EPR technique in generating field-swept EPR spectra, as well as some of the distorting effects that are peculiar to the pulsed detection method. The application of this technique to Cr3+-doped ZBLAN reveals that much of the broad resonance extending from g(eff) = 5.1 to g(eff) = 1.97, characteristic of X-band continuous wave EPR of Cr3+ in glasses, is absent. We attribute this largely to the variation in nutation frequencies across the spectrum that result from sites possessing large fine structure interactions. The description of the spin dynamics of such sites is complicated and we discuss some possible approaches to the simulation of the pulsed EPR spectra.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
This paper presents a numerical technique for the design of an RF coil for asymmetric magnetic resonance imaging (MRI) systems. The formulation is based on an inverse approach where the cylindrical surface currents are expressed in terms of a combination of sub-domain basis functions: triangular and pulse functions. With the homogeneous transverse magnetic field specified in a spherical region, a functional method is applied to obtain the unknown current coefficients. The current distribution is then transformed to a conductor pattern by use of a stream function technique. Preliminary MR images acquired using a prototype RF coil are presented and validate the design method. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
In this study the variations in surface reflectance properties and pigment concentrations of Antarctic moss over species, sites, microtopography and with water content were investigated. It was found that species had significantly different surface reflectance properties, particularly in the region of the red edge (approximately 700 nm), but this did not correlate strongly with pigment concentrations. Surface reflectance of moss also varied in the visible region and in the characteristics of the red edge over different sites. Reflectance parameters, such as the photochemical reflectance index (PRI) and cold hard band were useful discriminators of site, microtopographic position and water content. The PRI was correlated both with the concentrations of active xanthophyll-cycle pigments and the photosynthetic light use efficiency, F-v/F-m, measured using chlorophyll fluorescence. Water content of moss strongly influenced the amplitude and position of the red-edge as well as the PRI, and may be responsible for observed differences in reflectance properties for different species and sites. All moss showed sustained high levels of photoprotective xanthophyll pigments, especially at exposed sites, indicating moss is experiencing continual high levels of photochemical stress.
Resumo:
The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6') common to both the glycine receptor (GlyR) and gamma-aminobutyric acid, type A receptor (GABAAR) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter, and the main pore blocker binding site. Despite their high amino acid sequence homologies and common role in conducting chloride ions, recent studies have suggested that the GlyRs and GABA(A)Rs have divergent open state pore structures at the 6' position. When both the human alpha1(T6'C) homomeric GlyR and the rat alpha1(T6'C)beta1(T6'C) heteromeric GABA(A)R were expressed in human embryonic kidney 293 cells, their 6' residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidizing agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABA(A)R pore structure at the 6' level may vary between different expression systems.