991 resultados para SIMULATION EXPERIMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid-channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22 degrees to 42 degrees) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-intermediate dynamic structure factor Fs(k,t) of liquid lithium near the melting temperature is calculated by molecular dynamics. The results are compared with the predictions of several theoretical approaches, paying special attention to the Lovesey model and the Wahnstrm and Sjgren mode-coupling theory. To this end the results for the Fs(k,t) second memory function predicted by both models are compared with the ones calculated from the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The description of the fate of fertilizer-derived nitrogen (N) in agricultural systems is an essential tool to enhance management practices that maximize nutrient use by crops and minimize losses. Soil erosion causes loss of nutrients such as N, causing negative effects on surface and ground water quality, aside from losses in agricultural productivity by soil depletion. Studies correlating the percentage of fertilizer-derived N (FDN) with soil erosion rates and the factors involved in this process are scarce. The losses of soil and fertilizer-derived N by water erosion in soil under conventional tillage and no tillage under different rainfall intensities were quantified, identifying the intervening factors that increase loss. The experiment was carried out on plots (3.5 × 11 m) with two treatments and three replications, under simulated rainfall. The treatments consisted of soil with and soil without tillage. Three successive rainfalls were applied in intervals of 24 h, at intensities of 30 mm/h, 30 mm/h and 70 mm/h. The applied N fertilizer was isotopically labeled (15N) and incorporated into the soil in a line perpendicular to the plot length. Tillage absence resulted in higher soil losses and higher total nitrogen losses (TN) by erosion induced by the rainfalls. The FDN losses followed another pattern, since FDN contributions were highest from tilled plots, even when soil and TN losses were lowest, i.e., the smaller the amount of eroded sediment, the greater the percentage of FDN associated with these. Rain intensity did not affect the FDN loss, and losses were greatest after less intense rainfalls in both treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-body counting is a technique of choice for assessing the intake of gamma-emitting radionuclides. An appropriate calibration is necessary, which is done either by experimental measurement or by Monte Carlo (MC) calculation. The aim of this work was to validate a MC model for calibrating whole-body counters (WBCs) by comparing the results of computations with measurements performed on an anthropomorphic phantom and to investigate the effect of a change in phantom's position on the WBC counting sensitivity. GEANT MC code was used for the calculations, and an IGOR phantom loaded with several types of radionuclides was used for the experimental measurements. The results show a reasonable agreement between measurements and MC computation. A 1-cm error in phantom positioning changes the activity estimation by >2%. Considering that a 5-cm deviation of the positioning of the phantom may occur in a realistic counting scenario, this implies that the uncertainty of the activity measured by a WBC is ∼10-20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the result of polar angle resolved x¿ray photoemission spectroscopy on Al(111)/O and cluster calculations of the O(1s) binding energy (BE) for various model situations. In the experimental data two O(1s) peaks are observed, separated by 1.3 eV. The angular behavior (depth¿resolution) could indicate that the lower BE peak is associated with an O atom under the surface, and the higher BE peak with an O atom above the surface. Equally, it could indicate oxygen islands on the surface where the perimeter atoms have a higher O(1s) BE than the interior atoms. The cluster calculations show that the former interpretation cannot be correct, since an O ads below the surface has a higher calculated O(1s) BE than one above. Cluster calculations simulating oxygen islands are, however, consistent with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamics of a water-oil meniscus moving from a smaller to a larger pore. The process is characterised by an abrupt change in the configuration, yielding a sudden energy release. A theoretic study for static conditions provides analytical solutions of the surface energy content of the system. Although the configuration after the sudden energy release is energetically more convenient, an energy barrier must be overcome before the process can happen spontaneously. The energy barrier depends on the system geometry and on the flow parameters. The analytical results are compared to numerical simulations that solve the full Navier-Stokes equation in the pore space and employ the Volume Of Fluid (VOF) method to track the evolution of the interface. First, the numerical simulations of a quasi-static process are validated by comparison with the analytical solutions for a static meniscus, then numerical simulations with varying injection velocity are used to investigate dynamic effects on the configuration change. During the sudden energy jump the system exhibits an oscillatory behaviour. Extension to more complex geometries might elucidate the mechanisms leading to a dynamic capillary pressure and to bifurcations in final distributions of fluid phases in porous

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross-fostered eggs originating from single-queen (= monogynous) or multiple-queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.