1000 resultados para SILICON COMPLEXES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendrimeric nanoparticles are potential drug delivery devices which can enhance the solubility of hydrophobic drugs, thus increasing their bioavailability and sustained release action. A quantitative understanding of the dendrimer-drug interactions can give valuable insight into the solubility and release profile of hydrophobic drug molecules in various solvent conditions. Fully atomistic molecular dynamics (MD) simulations have been performed to study the interactions of G5 PPIEDA (G5 ethylenediamine cored poly(propylene imine)) dendrimer and two well known drugs (Famotidine and Indomethacin) at different pH conditions. The study suggested that at low pH the dendrimer-drug complexes are thermodynamically unstable as compared to neutral and high pH conditions. Calculated Potential of Mean Force (PMF) by umbrella sampling showed that the release of drugs from the dendrimer at low pH is spontaneous, median release at neutral pH and slow release at high pH. In addition, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding free energy calculations were also performed at each umbrella sampling window to identify the various energy contributions. To understand the effect of dendrimer chemistry and topology on the solubility and release profile of drugs, this study is extended to explore the solubility and release profile of phenylbutazone drug complexed with G3 poly(amidoamine) and G4 diaminobutane cored PPI dendrimers. The results indicate that the pH-induced conformational changes in dendrimer, ionization states, dendrimer type and pK(a) of the guest molecules influence the free energy barrier and stability of complexation, and thus regulate drug loading, solubility and release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanowires were grown on Si substrates by electron beam evaporation (EBE) was demonstrated using Indium as an alternate catalyst to gold. We have studied the effect of substrate (growth) temperature, deposition time on the growth of nanowires. It was observed that a narrow temperature window from 300 degrees C to 400 degrees C for the nanowires growth. At growth temperature >= 400 degrees C suppression of nanowires growth was observed due to evaporation of catalyst particle. It is also observed that higher deposition times also leading to the absence of nanowire growth as well as uncatalyzed deposition on the nanowires side walls due to limited surface diffusion of ad atoms and catalyst evaporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the combined effects of size quantization and device temperature variations (T = 50K to 400 K) on the intrinsic carrier concentration (n(i)), electron concentration (n) and thereby on the threshold voltage (V-th) for thin silicon film (t(si) = 1 nm to 10 nm) based fully-depleted Double-Gate Silicon-on-Insulator MOSFETs. The threshold voltage (V-th) is defined as the gate voltage (V-g) at which the potential at the center of the channel (Phi(c)) begins to saturate (Phi(c) = Phi(c(sat))). It is shown that in the strong quantum confinement regime (t(si) <= 3nm), the effects of size quantization far over-ride the effects of temperature variations on the total change in band-gap (Delta E-g(eff)), intrinsic carrier concentration (n(i)), electron concentration (n), Phi(c(sat)) and the threshold voltage (V-th). On the other hand, for t(si) >= 4 nm, it is shown that size quantization effects recede with increasing t(si), while the effects of temperature variations become increasingly significant. Through detailed analysis, a physical model for the threshold voltage is presented both for the undoped and doped cases valid over a wide-range of device temperatures, silicon film thicknesses and substrate doping densities. Both in the undoped and doped cases, it is shown that the threshold voltage strongly depends on the channel charge density and that it is independent of incomplete ionization effects, at lower device temperatures. The results are compared with the published work available in literature, and it is shown that the present approach incorporates quantization and temperature effects over the entire temperature range. We also present an analytical model for V-th as a function of device temperature (T). (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water soluble dinickel(II) complexes Ni-2(L)(2)(1-2)](NO3)(4) (1-2), where L1-2 are triazole based dinucleating ligands, were synthesized and characterized. The DNA binding, protein binding, DNA hydrolysis and anticancer properties were investigated. The interactions of complexes 1 and 2 with calf thymus DNA were studied by spectroscopic techniques, including absorption and fluorescence spectroscopy. The DNA binding constant values of the complexes 1 and 2 were found to be 2.36 x 10(5) and 4.87 x 10(5) M-1 and the binding affinities are in the following order: 2 > 1. Both the dinickel(II) complexes 1 and 2, promoted the hydrolytic cleavage of plasmid pBR322 DNA under both anaerobic and aerobic conditions. Kinetic data for DNA hydrolysis promoted by 1 and 2 under physiological conditions give the observed rate constants (k(obs)) of 5.05 +/- 0.2 and 5.65 +/- 0.1 h(-1), respectively, which shows 10(8)-fold rate acceleration over the uncatalyzed reaction of ds-DNA. Meanwhile, the interactions of the complex with BSA have also been studied by spectroscopy. Both the complexes 1 and 2 display strong binding propensity and the binding constant (K-b), number of binding sites (n) were obtained are 0.71 x 10(6) 1.47] and 5.62 x 10(6) 1.98] M-1, respectively. The complexes 1 and 2 also promoted the apoptosis against human carcinoma (HeLa, and BeWo) cancer cells. Cytotoxicity of the complexes was further confirmed by lactate dehydrogenase enzyme level in cancer cell lysate and content media. (c) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) complexes Cu(Fc-aa)(cur)] (1-3) of curcumin (Hcur) and N-ferrocenylmethyl-L-amino acids (Fc-aa), viz., ferrocenylmethyl-L-tyrosine (Fc-TyrH), ferrocenylmethyl-L-tryptophan (Fc-TrpH) and ferrocenylmethyl-L-methionine (Fc-MetH), were prepared and characterized. The DNA photocleavage activity, photocytotoxicity and cellular localization in HeLa and MCF-7 cancer cells of these complexes were studied. Acetylacetonate (acac) complexes Cu(Fc-aa)(acac)] (4-6) were prepared and used as controls. The chemical nuclease inactive complexes showed efficient pUC19 DNA cleavage activity in visible light. Complexes 1-3 showed high photocytotoxicity with low dark toxicity thus giving remarkable photodynamic effect. FACScan analysis showed apoptosis of the cancer cells. Fluorescence microscopic studies revealed primarily cytosolic localization of the complexes. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four dinucleating bis(thiosemicarbazone) ligands and their zinc complexes have been synthesized and characterized by multinuclear NMR (H-1 and C-13), IR, UV-Vis, ESI-MS and fluorescence spectroscopic techniques. Their purity was assessed by elemental analysis. Cytotoxicity was tested against five human cancer cell lines using the sulphorhodamine B (SRB) assay, where one of the complexes, 1,3-bis{biacetyl-2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} propane (6), was found to be quite cytotoxic against MCF-7 (breast cancer) and HepG2 (hepatoma cancer) cell lines, with a potency similar to that of the well known anticancer drug adriamycin. It is evident from the cellular uptake studies that the uptake is same for the active complex 6 and the inactive complex 8 (1,6-bis{biacetyl- 2'-(4 `'-N-pyrrolidinylthiosemicarbazone)-3'-(4 `'-N-pyrrolidinylthiosemicarbazone) zinc(II)} hexane) in MCF-7 and HepG2 cell lines. In vitro DNA binding and cleavage studies revealed that all complexes bind with DNA through electrostatic interaction, and cause no significant cleavage of DNA. (C) 2'13 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Schiff base metal complexes Cu-SPETNNO3 (1) and Ni-SPETNNO3 (2) SPETN=2,2-propane,1,3-diylbis(nitrilomethyldyne)pyridyl,phenolate] ] with hydrogen bonding groups have been synthesized and characterized by single-crystal X-ray diffraction. In both of the compounds nitrates occupy a crystallographic general position. In 1 the lattice nitrates are on the 2(1) screw axis while in 2 they are at the crystallographic inversion center. C-HOnitrate synthons (formed by the nitrate anions and peripheral hydrogen bonding groups of the metal complexes) are non-covalent building blocks in molecular-assembly and packing of the cationic Schiff base metal complexes (M=Ni2+, Cu2+), resulting in 2-D hydrogen bonded networks. The CuCu non-bonding contact in 1 is 3.268 angstrom while the Ni-Ni bonding distance in 2 is 3.437 angstrom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocenyl platinum(II) complexes (1-3), viz. Pt(Fc-tpy)Cl]Cl (1), Pt(Fc-tpy)(NPC)]Cl (2, HNPC = N-propargyl carbazole) and Pt(Fc-bpa)Cl]Cl (3), were prepared, characterized and their anti-proliferative properties in visible light in human keratinocyte (HaCaT) cell lines have been studied. Pt(Ph-tpy)Cl]Cl (4) was prepared and used as a control. Complexes 1 and 3, structurally characterized by X-ray crystallography, show distorted square-planar geometry for the platinum(II) centre. Complexes 1 and 2 having the Fc-tpy ligand showed an intense absorption band at similar to 590 nm. The ferrocenyl complexes are redox active showing the Fc(+)-Fc couple near 0.6 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate (TBAP). Complexes 1-3 showed external binding to calf thymus DNA. Both 1 and 2 showed remarkable photocytotoxicity in HaCaT cell lines giving respective IC50 values of 9.8 and 12.0 mu M in visible light of 400-700 nm with low dark toxicity (IC50 > 60 mu M). Fluorescent imaging studies showed the spread of the complexes throughout the cell localising both in cytoplasm and the nucleus. The ferrocenyl complexes triggered apoptosis on light exposure as evidenced from the Annexin V-FITC/PI and DNA ladder formation assays. Spectral studies revealed the formation of ferrocenium ions upon photo-irradiation generating cytotoxic hydroxyl radicals via a Fenton type mechanism. The results are rationalized from a TDDFT study that shows involvement of ferrocene and the platinum coordinated terpyridine moiety as respective HOMO and LUMO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three highly stable, hexacoordinated nonoxidovanadium(IV), V-IV(L)(2), complexes (1-3) have been isolated and structurally characterized with tridentate aroylhydrazonates containing ONO donor atoms. All the complexes are stable in the open air in the solid state as well as in solution, a phenomenon rarely observed in nonoxidovanadium(IV) complexes. The complexes have good solubility in organic solvents, permitting electrochemical and various spectroscopic investigations. The existence of nonoxidovanadium(IV) complexes was confirmed by elemental analysis, ESI mass spectroscopy, cyclic voltammetry, EPR, and magnetic susceptibility measurements. X-ray crystallography showed the N3O3 donor set to define a trigonal prismatic geometry in each case. All the complexes show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 3 being the most potent, which is comparable to insulin at the complex concentration of 4 mu M, while the others have moderate insulin mimetic activity. In addition, the in vitro antiproliferative activity of complexes 1-3 against the He La cell line was assayed. The cytotoxicity of the complexes is affected by the various functional groups attached to the bezoylhydrazone derivative and 2 showed considerable antiproliferative activity compared to the most commonly used chemotherapeutic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxovanadium(IV) complexes VO(aip)(L)](ClO4)(2) (L = phtpy, 1; stpy, 2) and VO(pyip)(L)](ClO4)(2) (L = phtpy, 3; stpy, 4), where aip is 2-(9-anthryl)-1H-imidazo4,5-f]1,10] phenanthroline, pyip is 2-(1-pyrenyl)-1Himidazo4,5-f]1,10] phenanthroline, phtpy is (4'-phenyl)-2,2': 6',2 `'-terpyridine and stpy is (2,2': 6', 2 `'-terpyridin-4'-oxy) ethyl-beta-D-glucopyranoside, were prepared, characterized and their DNA binding and photocleavage activity, cellular uptake and photocytotoxicity in visible light were studied. The complexes are avid binders to calf thymus DNA (K-b similar to 10(5) mol(-1)). They efficiently cleave pUC19 DNA in red light of 705 nm via the formation of HO center dot species. The glucose appended complexes 2 and 4 showed higher photocytotoxicity in HeLa and Hep G2 cells over the normal HEK 293T cells. No such preference was observed for the phtpy complexes 1 and 3. No significant difference in IC50 values was observed for the HEK 293T cells. Cell cycle analysis showed that the glucose appended complexes 2 and 4 are more photocytotoxic in cancer cells than in normal cells. Fluorescence microscopy was done to study the cellular localization of complex 4 having a pendant pyrenyl group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of the salicylhydrazone of 2-hydroxy-1-naphthaldehyde (H2L1), anthranylhydrazone of 2hydroxy-l-naphthaldehyde (H2L2), benzoylhydrazone of 2-hydroxy-1-acetonaphthone (H2L3) and anthranylhydrazone of 2-hydroxy-1-acetonaphthone (H2L4; general abbreviation H2L) with MoO2(acac)21 afforded a series of 5- and 6- coordinate Mo(VI) complexes of the type MoO2L1-2(ROH)] where R = C2H5 (1) and CH3 (2)], and MoO2L3-4] (3 and 4). The substrate binding capacity of 1 has been demonstrated by the formation of one mononuclear mixed-ligand dioxidomolybdenum complex MoO2L1(Q)] (where Q= gamma-picoline (la)). Molecular structure of all the complexes (I, la, 2,3 and 4) is determined by X-ray crystallography, demonstrating the dibasic tridentate behavior of ligands. All the complexes show two irreversible reductive responses within the potential window -0.73 to -1.08 V, due to Movl/Mov and Mov/Mow processes. Catalytic potential of these complexes was tested for the oxidation of benzoin using 30% aqueous H2O2 as an oxidant in methanol. At least four reaction products, benzoic acid, benzaldehydedimethylacetal, methyl benzoate and benzil were obtained with the 95-99% conversion under optimized reaction conditions. Oxidative bromination of salicylaldehyde, a functional mimic of haloperoxidases, in aqueous 1-1202/KEr in the presence of HC1O4 at room temperature has also been carried out successfully. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transfer free processes using Cu films greatly simplify the fabrication of reliable suspended graphene devices. In this paper, the authors report on the use of electrodeposited Cu films on Si for transfer free fabrication of suspended graphene devices. The quality of graphene layers on optimized electrodeposited Cu and Cu foil are found to be the same. By selectively etching the underlying Cu, the authors have realized by a transfer free process metal contacted, suspended graphene beams up to 50 mu m in length directly on Si. The suspended graphene beams do not show any increase in defect levels over the as grown state indicating the efficiency of the transfer free process. Measured room temperature electronic mobilities of up to 5200 cm(2)/V.s show that this simpler and CMOS compatible route has the potential to replace the foil based route for such suspended nano and micro electromechanical device arrays. (C) 2014 American Vacuum Society.