829 resultados para Robust multidisciplinary
Resumo:
One of critical challenges in automatic recognition of TV commercials is to generate a unique, robust and compact signature. Uniqueness indicates the ability to identify the similarity among the commercial video clips which may have slight content variation. Robustness means the ability to match commercial video clips containing the same content but probably with different digitalization/encoding, some noise data, and/or transmission and recording distortion. Efficiency is about the capability of effectively matching commercial video sequences with a low computation cost and storage overhead. In this paper, we present a binary signature based method, which meets all the three criteria above, by combining the techniques of ordinal and color measurements. Experimental results on a real large commercial video database show that our novel approach delivers a significantly better performance comparing to the existing methods.
Resumo:
Most face recognition systems only work well under quite constrained environments. In particular, the illumination conditions, facial expressions and head pose must be tightly controlled for good recognition performance. In 2004, we proposed a new face recognition algorithm, Adaptive Principal Component Analysis (APCA) [4], which performs well against both lighting variation and expression change. But like other eigenface-derived face recognition algorithms, APCA only performs well with frontal face images. The work presented in this paper is an extension of our previous work to also accommodate variations in head pose. Following the approach of Cootes et al, we develop a face model and a rotation model which can be used to interpret facial features and synthesize realistic frontal face images when given a single novel face image. We use a Viola-Jones based face detector to detect the face in real-time and thus solve the initialization problem for our Active Appearance Model search. Experiments show that our approach can achieve good recognition rates on face images across a wide range of head poses. Indeed recognition rates are improved by up to a factor of 5 compared to standard PCA.
Resumo:
We motivate and study the robustness of fairness notions under refinement of transitions and places in Petri nets. We show that the classical notions of weak and strong fairness are not robust and we propose a hierarchy of increasingly strong, refinement-robust fairness notions. That hierarchy is based on the conflict structure of transitions, which characterizes the interplay between choice and synchronization in a fairness notion. Our fairness notions are defined on non-sequential runs, but we show that the most important notions can be easily expressed on sequential runs as well. The hierarchy is further motivated by a brief discussion on the computational power of the fairness notions.