971 resultados para Road Traffic Crashes
Resumo:
Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.
Resumo:
Like most motorists, you want your trips to go as quickly and smoothly as possible. Things like having to wait at a railroad crossing while the train crosses, or having to slow for a rough railroad crossing may seem like an inconvenience. But, when you look at the overall picture, you will find there are many things that affect your trips: heavy traffic, including large trucks, on the interstates; congestion on urban freeways; a lot of pedestrian traffic at crosswalks; a bus stopped on the street while passengers are boarding or exiting; slow-moving farm equipment or bicyclists on a rural road; or any number of other disruptions. The reality is that Iowa’s transportation system is extremely complex. Iowa has many diverse transportation users and all types of vehicles traveling at differing speeds.
Resumo:
The Iowa Transportation Improvement Program (Program) is published to inform Iowans of planned investments in our state’s transportation system. The Iowa Transportation Commission (Commission) and Iowa Department of Transportation (Iowa DOT) are committed to programming those investments in a fiscally responsible manner. A major component of the 2010-2014 Program is the full integration of funding allocated to the Iowa DOT from the American Recovery and Reinvestment Act of 2009 (Recovery Act). To date, the Recovery Act has provided over $400 million of additional federal funding for transportation in Iowa, including funding that is allocated to local governments and entities. Recovery Act funding will result in a record year for transportation construction in Iowa and the creation and retention of jobs. Opportunities for additionalRecovery Act transportation funding remain and will be pursued as they becomeavailable. While Recovery Act funding will make a one-time significant impact in addressing Iowa’s backlog of needs, it is important to note that there remains a large shortfall in sustained annual transportation investment to meet Iowa’s current and future critical transportation needs. In recognition of this shortfall, Governor Culver introduced and the legislature passed an I-JOBS proposal. I-JOBS will result in an additional $50 million of state funding to reduce structurally deficient and functionally obsolete bridges on the primary road system and approximately $10 million in funding for other modes of transportation including $3 million of new funding to support the expansion of passenger rail service in Iowa. I-JOBS, and the continuing gradual increase in funding due to TIME-21, will complement and extend the benefits of Recovery Act funding and set the stage for addressing the shortfall in annual funding in the next few years. Iowa’s transportation system is multi-modal; therefore, the Program encompasses investments in aviation, transit, railroads, trails, and highways. A major component of the Program is the highway section. The FY2010-2014 highway section is financially balanced and was developed to achieve several objectives. The Commission’s primary highway investment objective is stewardship (i.e. safety, maintenance and preservation) of Iowa’s existing highway system. The highway section includes an annual average of $104 million for preserving the interstate system; an annual average of $78 million for non-interstate pavement preservation; an annual average of $36 million for non-interstate bridges; and an annual average of $14 million for safety projects. Another objective is to maintain the scheduled completion of interstate and non-interstate capacity and economic development projects that were identified in the previous Program and this Program does so. The final Commission objective is to further address capacity and economic development needs and the Commission has done so by adding several such projects to the Program. Construction improvements are partially funded through the current federal transportation act, Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU). The act will expire September 30, 2009. With the expiration of SAFETEA-LU, there is significant uncertainty in the forecast of federal revenues in the out-years of this Program. The Commission and Iowa DOT will monitor federal actions closely and make adjustments to the Program as necessary. The Iowa DOT and Commission appreciate the public’s involvement in the state’s transportation planning process. Comments received personally, by letter, or through participation in the Commission’s regular meetings or public input meetings held around the state each year are invaluable in providing guidance for the future of Iowa’s transportation system. It should be noted that this document is a planning guide. It does not represent a binding commitment or obligation of the Commission or Iowa DOT, and is subject to change. You are invited to visit the Iowa DOT’s Web site at iowadot.gov for additional and regular updates about the department’s programs and activities.
Resumo:
This a survey that determines the total number and type of vehicles entering and leaving Indianola to obtain origin and destination data from representataive samples of those vehicles.
Resumo:
Pursuant to Iowa Code Section 307.46(2), the following report is submitted on the use of reversions. The Iowa Department of Transportation spent $500,000 of the Fiscal Year 2008 Road Use Tax Fund/Primary Road Fund budget reversion in Fiscal Year 2009 for storage area network software.
Resumo:
Iowa railroad traffic density.
Resumo:
The proposed project consists of improving approximately 2.6 miles of Collins Road NE (Highway 100) in Cedar Rapids, Iowa. The project extends from the intersection of Center Point Road to approximately 750 feet east of its intersection with 1st Avenue.
Resumo:
Not only are we excited that Team Archaeology is back for our third ride, we are energized to be part of a “Human and Natural History” partnership that allows us expanded opportunities to share the story of Iowa’s amazing past. Once again there will be archaeologists along for the ride, as well as at Expo and this year at roadside locations Day One, Five and Six. Don’t hesitate to ask about the history of the first people to travel this landscape as well as the stories of each generation that has contributed to what we know of ourselves today. We will also feature information about the landscape and natural resources of Iowa you will encounter along the route through our partnering colleagues specializing in geology, hydrology, and other earth sciences. Enjoy using this booklet as your guide to the week’s activities and please help yourself to free materials from our outreach booth about our shared past and the natural world we depend on. Ride smart, be safe, and when you get home, be sure to tell your friends and neighbors about Iowa archaeology!
Resumo:
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.
Resumo:
Team Archaeology is back for a second year to share the history of Iowa with the riders and supporters of RAGBRAI.
Resumo:
During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.