864 resultados para Resistance Associated Protein-2
Resumo:
The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.
Resumo:
Emiliania huxleyi (Lohm.) Hay and Mohler is a ubiquitous unicellular marine alga surrounded by an elaborate covering of calcite platelets called coccoliths. It is an important primary producer involved in oceanic biogeochemistry and climate regulation. Currently, E. huxleyi is separated into five morphotypes based on morphometric, physiological, biochemical, and immunological differences. However, a genetic marker has yet to be found to characterize these morphotypes. With the use of sequence analysis and denaturing gradient gel electrophoresis, we discovered a genetic marker that correlates significantly with the separation of the most widely recognized A and B morphotypes. Furthermore, we reveal that the A morphotype is composed of a number of distinct genotypes. This marker lies within the 3' untranslated region of a coccolith associated protein mRNA, which is implicated in regulating coccolith calcification. Consequently, we tentatively termed this marker the coccolith morphology motif.
Resumo:
The AINT/ERIC/TACC genes encode novel proteins with a coiled coil domain at their C-terminus. The founding member of this expanding family of genes, transforming acidic coiled coil 1 (TACC1), was isolated from a BAC contig spanning the breast cancer amplicon-1 on 8p11. Transfection of cells in vitro with TACC1 resulted in anchorage-independent growth consistent with a more "neoplastic" phenotype. Database searches employing the human TACC1 sequence revealed other novel genes, TACC2 and TACC3, with substantial sequence homology particularly in the C-terminal regions encoding the coiled coil domains. TACC2, located at 10q26, is similar to anti-zuai-1 (AZU-1), a candidate breast tumour suppressor gene, and ECTACC, an endothelial cell TACC which is upregulated by erythropoietin (Epo). The murine homologue of TACC3, murine erythropoietin-induced cDNA (mERIC-1) was also found to be upregulated by Epo in the Friend virus anaemia (FVA) model by differential display-PCR. Human ERIC-1, located at 4p16.3, has been cloned and encodes an 838-amino acid protein whose N- and C-terminal regions are highly homologous to the shorter 558-amino acid murine protein, mERIC-1. In contrast, the central portions of these proteins differ markedly. The murine protein contains four 24 amino acid imperfect repeats. ARNT interacting protein (AINT), a protein expressed during embryonic development in the mouse, binds through its coiled coil region to the aryl hydrocarbon nuclear translocator protein (ARNT) and has a central portion that contains seven of the 24 amino acid repeats found in mERIC-1. Thus mERIC-1 and AINT appear to be developmentally regulated alternative transcripts of the gene. Most members of the TACC family discovered so far contain a novel nine amino acid putative phosphorylation site with the pattern [R/K]-X(3)-[E]-X(3)-Y. Genes with sequence homology to the AINT/ERIC/TACC family in other species include maskin in Xenopus, D-TACC in Drosophila and TACC4 in the rabbit. Maskin contains a peptide sequence conserved among eIF-4E binding proteins that is involved in oocyte development. D-TACC cooperates with another conserved microtubule-associated protein Msps to stabilise spindle poles during cell division. The diversity of function already attributed to this protein family, including both transforming and tumour suppressor properties, should ensure that a new and interesting narrative is about to unfold.
Resumo:
The use of screening methods based on the detection of biological effects of growth promoters is a promising approach to assist residue monitoring. To reveal useful effects on protein metabolism, male and female veal calves at 10 weeks of age were treated thrice with a combination of 25 mg 17ß-estradiol 3-benzoate and 150 mg 19-nortestosterone decanoate with 2 weeks intervals and finally once with 4 mg dexamethasone. Hormone-treated calves showed a significant accelerated growth rate over 6 weeks. Plasma samples of treated and control calves were analysed for immunoreactive inhibin (ir-inhibin), osteocalcin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor-binding protein 2 (IGFBP-2), IGFBP-3, luteinzing hormone (LH), follicle-stimulating hormone (FSH) and prolactin using immunoaffinity assays. Hormone treatment did not affect levels of IGF-1, IGFBP-2, IGFBP-3, LH, FSH and prolactin. The concentration of circulating ir-inhibin decreased, however, significantly (P < 0.05) in bull calves upon administration of the sex steroids, whereas it remained unchanged in the female animals. Dexamethasone treatment decreased significantly (P < 0.05) circulating levels of osteocalcin in both female and male animals. Ir-inhibin and osteocalcin were, therefore, considered as candidates for a protein biomarker-based screening assay for detection of abuse of estrogens, androgens and/or glucocorticoids in cattle fattening, which is being developed in the framework of EU research project BioCop
Resumo:
An ideal cancer chemotherapeutic prodrug is completely inactive until metabolized by a tumour-specific enzyme, or by an enzyme that is only metabolically competent towards the prodrug under physiological conditions unique to the tumour. Human cancers, including colon, breast, lung, liver, kidney and prostate, are known to express cytochrome P450 (CYP) isoforms including 3A and 1A subfamily members. This raises the possibility that tumour CYP isoforms could be a focus for tumour-specific prodrug activation. Several approaches are reviewed, including identification of prodrugs activated by tumour-specific polymorphic CYPs, use of CYP-gene directed enzyme prodrug therapy and CYPs acting as reductases in hypoxic tumour regions. The last approach is best exemplified by AQ4N, a chemotherapeutic prodrug that is bioreductively activated by CYP3A. This study shows that freshly isolated murine T50/80 mammary carcinoma and RIF-1 fibrosarcoma 4-electron reduces AQ4N to its cytotoxic metabolite, AQ4 (T50/80 K-m = 26.7 mu M, V-max = 0.43 mu M/mg protein/min; RIF-1 K-m = 33.5 mu M, V-max = 0.42 mu M/mg protein/min) via AQM, a mono-N-oxide intermediate (T50/80 K-m = 37.5 mu M; V-max = 1.4 mu M/mg protein/min; RIF-1 K-m = 37.5 mu M; V-max = 1.2 mu M/mg protein/min). The prodrug conversion was dependent on NADPH and inhibited by air or carbon monoxide. Cyp3A mRNA and protein were both present in T50/80 carcinoma grown in vivo (RIF-1 not measured). Exposure of isolated tumour cells to anoxia (2 h) immediately after tumour excision increased cyp3A protein 2-3-fold over a 12 h period, after which time the cyp protein levels returned to the level found under aerobic conditions. Conversely, cyp3A mRNA expression showed an initial 3-fold decrease under both oxic and anoxic conditions; this returned to near basal levels after 8-24 h. These results suggest that cyp3A protein is stabilized in the absence of air, despite a decrease in cyp3A mRNA. Such a 'stabilization factor' may decrease cyp3A protein turnover without affecting the translation efficiency of cyp3A mRNA. Confirmation of the CYP activation of AQ4N bioreduction was shown with human lymphoblastoid cell microsomes transfected with CYP3A4, but not those transfected with CYP2B6 or cytochrome P450 reductase. AQ4N is also reduced to AQ4 in NADPH-fortified human renal cell carcinoma (K-m = 4 mu M, V-max = 3.5 pmol/mg protein/min) and normal kidney (K-m = 4 mu M, V-max = 4.0 pmol/mg protein/min), both previously shown to express CYP3A. Germane to the clinical potential of AQ4N is that although both normal and tumour cells are capable of reducing AQ4N to its cytotoxic species, the process requires low oxygen conditions. Hence, AQ4N metabolism should be restricted to hypoxic tumour cells. The isoform selectivity of AQ4N reduction, in addition to its air sensitivity, indicates that AQ4N haem coordination and subsequent oxygen atom transfer from the active-site-bound AQ4N is the likely mechanism of N-oxide reduction. The apparent increase in CYP3A expression under hypoxia makes this a particularly interesting application of CYPs for tumour-specific prodrug activation.
Resumo:
Experimental use of statins as stimulators of bone formation suggests they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In this study, the effect of oral and local administration of simvastatin to a 0 tricalcium phosphate (beta TCP)-filled defect around an implant was compared with recombinant human bone morphogenetic protein 2 (rhBMP2). On hundred and sixty-two Sprague-Dawley rats were assigned to treatment groups: local application of 0.1, 0.9 or 1.7 mg of simvastatin, oral simvastatin at 5, 10 or 50 mg kg(-1) day(-1) for 20 days, local delivery of I or 10 mu g of rhBMP2, or control. At 6 weeks rhBMP2 increased serum tartrate-resistant acid phosphatase 5b levels and reduced PTCP area fraction, particle size and number compared with control, suggesting increased osteoclast activity. There was reduced stiffness and increased mechanical strength with this treatment. Local simvastatin resulted in a decreased mineral apposition rate at 6 weeks and increased fibrous area fraction, PTCP area fraction, particle size and number at 26 weeks. Oral simvastatin had no effect compared with control. Local application of rhBMP2 increased resorption and improved mechanical strength whereas simvastatin was detrimental to healing. Oral simvastatin was ineffective at promoting either ceramic resorption or bone formation. The effect of statins on the repair of bone defects with graft substitute materials is influenced by its bioavailability. Thus, further studies on the optimal delivery system are needed. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.
Resumo:
Cell division depends on the fine control of both microtubule dynamics and microtubule organisation. The microtubule bundling protein MAP65 is a 'midzone MAP' essential for the integrity of the anaphase spindle and cell division. Arabidopsis thaliana MAP65-1 (AtMAP65-1) binds and bundles microtubules by forming 25 nm cross-bridges. Moreover, as AtMAP65-1 bundles microtubules in interphase, anaphase and telophase but does not bind microtubules in prophase or metaphase, its activity through the cell cycle must be under tight control. Here we show that AtMAP65-1 is hyperphosphorylated during prometaphase and metaphase and that CDK and MAPK are involved in this phosphorylation. This phosphorylation inhibits AtMAP65-1 activity. Expression of nonphosphorylatable AtMAP65-1 has a negative effect on mitotic progression resulting in excessive accumulation of microtubules in the metaphase spindle midzone causing a delay in mitosis. We conclude that normal metaphase spindle organisation and the transition to anaphase is dependent on inactivation of AtMAP65-1.
Resumo:
Plant microtubules are intrinsically more dynamic than those from animals. We know little about the dynamics of the interaction of plant microtubule-associated proteins (MAPs) with microtubules. Here, we have used tobacco and Arabidopsis MAPs with relative molecular mass 65 kDa (NtMAP65-1a and AtMAP65-1), to study their interaction with microtubules in vivo. Using fluorescence recovery after photobleaching we report that the turnover of both NtMAP65-1a and AtMAP65-1 bound to microtubules is four- to fivefold faster than microtubule treadmilling (13 seconds compared with 56 seconds, respectively) and that the replacement of NtMAP65-1a on microtubules is by random association rather than by translocation along microtubules. MAP65 will only bind polymerised microtubules and not its component tubulin dimers. The turnover of NtMAP65-1a and AtMAP65-1 on microtubules is similar in the interphase cortical array, the preprophase band and the phragmoplast, strongly suggesting that their role in these arrays is the same. NtMAP65-1a and AtMAP65-1 are not observed to bind microtubules in the metaphase spindle and their rate of recovery is consistent with their cytoplasmic localisation. In addition, the dramatic reappearance of NtMAP65-1a on microtubules at the spindle midzone in anaphase B suggests that NtMAP65-1a is controlled post-translationally. We conclude that the dynamic properties of these MAPs in vivo taken together with the fact that they have been shown not to effect microtubule polymerisation in vitro, makes them ideally suited to a role in crossbridging microtubules that need to retain spatial organisation in rapidly reorganising microtubule arrays.
Resumo:
Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies , somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.
Resumo:
Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipo- polysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabi- dopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection.
Resumo:
Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.
Resumo:
Efficient synaptic vesicle membrane recycling is one of the key factors required to sustain neurotransmission. We investigated potential differences in the compensatory endocytic machineries in two glutamatergic synapses with phasic and tonic patterns of activity in the lamprey spinal cord. Post-embedding immunocytochemistry demonstrated that proteins involved in synaptic vesicle recycling, including dynamin, intersectin, and synapsin, occur at higher levels (labeling per vesicle) in tonic dorsal column synapses than in phasic reticulospinal synapses. Synaptic vesicle protein 2 occurred at similar levels in the two types of synapse. After challenging the synapses with high potassium stimulation for 30 min the vesicle pool in the tonic synapse was maintained at a normal level, while that in the phasic synapse was partly depleted along with expansion of the plasma membrane and accumulation of clathrin-coated intermediates at the periactive zone. Thus, our results indicate that an increased efficiency of the endocytic machinery in a synapse may be one of the factors underlying the ability to sustain neurotransmission at high rates.
Resumo:
Os compostos polifenólicos constituem uma classe de metabolitos secundários de plantas, mas existe também uma enorme quantidade de derivados sintéticos ou semi-sintéticos contendo múltiplas unidades fenólicas. Estes compostos apresentam importantes características biológicas, que dependem das suas estruturas básicas. Certos derivados desta família de compostos, tais como flavonoides, cromonas e cumarinas contribuem para os benefícios da dieta humana, e partilham o núcleo de benzopiran-(2 e 4)-ona ou benzofuran-3-ona. A presente dissertação inclui uma introdução geral e três capítulos que descrevem as novas rotas sintéticas estabelecidas para a preparação de novos híbridos de diversos compostos polifenólicos, assim como a sua elucidação estrutural e termina com a presentação dos resultados da avaliação biológica desses mesmos compostos. No segundo capítulo discute-se a preparação de híbridos de pirimidina- e imidazolidina-polifenóis, especialmente a síntese diastereoseletiva de novos híbridos benzofuran-3-ona-hidantoína e derivados de uracilo. A rota sintética envolve a ação de carbodiimidas sobre os ácidos cromona-(2- e 3)-carboxílicos num só passo ou em dois passos sequenciais, catalisada por uma base orgânica ou inorgânica. O terceiro capítulo descreve reações do tipo adições conjugadas 1,4 - hetero-ciclisações em cascata de compostos 1,3-dicarbonílicos em ácido cromona-3-carboxílico catalisadas por uma base orgânica, que originaram novas cromonas, cromanonas e flavonas polissubstituídas. As bispiranonas [bispiran-2 e 4)-onas] foram elaboradas numa reacção de acoplamento da 4-hidroxicumarina ou da lactona do ácido triacético com o ácido cromona-3-carboxílico ou precursores formil-funcionalizados (ω-formil-2’-hydroxy acetofenonas e cromona-3-carbaldeídos) utilizando organocatálise básica. Finalmente, alargou-se o estudo das adições conjugadas 1,4 para uma variedade de 4-hidroxipiran-2-onas e cetonas α,β-insaturadas para originar novos análogos de warfarina. Obteve-se uma variedade de estruturas complexas por hibridação das unidades de 4-hidroxicumarina ou da lactona do ácido triacético com os novos derivados de cromonas polissubstituídas. Todos as reações foram executadas em condições suaves e ambientalmente favoráveis, utilizando a 4-pirrolidinopiridina como organocatalisador básico. As estruturas dos novos híbridos polifenólicos foram caracterizados por técnicas espectroscópicas de alta resolução, incluindo espectroscopia de ressonância magnética nuclear (1D e 2D) e por difractometria de raios-X, que nos permitiram resolver o complexidade estrutural dos compostos sintetizados. O quarto capítulo apresenta os resultados da avaliação biológica obtidos com os híbridos polifenólicos sintetizados neste trabalho, mostrando a possibilidade de seu envolvimento na terapia do cancro. A maioria dos compostos foram avaliados quanto ao seu efeito sobre a citotoxicidade e proliferação de células leucémicas e ao seu envolvimento na regulação de via pró-inflamatória NF-kB, na qual, os híbridos de biscumarinas exibiram actividades elevadas (IC50 = 6-19 μM para inibição de NF-kB depois de 8 horas de incubação e IC50 = 15-39 μM para efeitos citotóxicos em células cancerosas, após 24 horas de incubação). Uma inibição moderada das enzimas HDAC e Cdc25 foi induzida pelos derivados de benzofuran-3-ona-hidantoína. Catorze dos novos derivados polifenólicos polissubstituídos, tendo como estrutura básica a benzopiran-4-ona, foram avaliados pela sua actividade quimiopreventiva do cancro mediada pela indução de sinalização citoprotectora Nrf2 (fator 2 relacionado com o fator nuclear da proteína E2) e capacidade para inibir a proliferação das células de cancro da mama. Os derivados da classe das cromanonas foram identificados como os indutores mais potentes da actividade Nrf2. As concentrações necessárias para aumentar a actividade de luciferase em 10 vezes (C10) foram de 2,8-21,3 μM. Todos os novos híbridos polifenólicos que apresentam atividade citotóxica e anti-proliferativa não afectam o crescimento de células saudáveis periféricas do sangue (PBMC) (IC50 > 50 μM), indicando a sua seletividade para as células cancerosas e sugerindo que alguns deles são estruturalmente interessantes para posteriores análises. A avaliação da atividade antioxidante utilizando os testes do radical livre DPPH e o poder redutor do ião férrico FRAP foram realizados em algumas estruturas híbridas polifenólicas.
Resumo:
Dissertação de mest.Ciências Biomédicas. Departamento de Ciências Biomédicas e Medicina, Univ. do Algarve, 2011