1000 resultados para Reservoir sedimentation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isotopic compositions of uranium (234U and 238U) and thorium (230Th and 232Th) were measured in metalliferous sediments from the western flank of the East Pacific Rise at 21°-22°S, in the area of hydrothermal activity and massive sulfide accumulation at the axis of the EPR. Concentration of 232Th (on the carbonate-free base) is consistent with composition of mafic extrusive rocks; isotope ratios 232Th/238U and 234U/238U indicate that about 70% of uranium passes into sediments from sea water with hydrothermal iron hydroxide. Mean sedimentation rates are calculated for seven cores by the nonequilibrium 230Th method with use of the constant concentration model. Flux of 230Th to bottom sediments is calculated and its mean value is used to determine sedimentation rate in four other cores. The constant flux model is used to calculate change of sedimentation rate with depth for seven cores over time interval of 100-300 ky. Sedimentation rates varied not much (0.3-0.6 cm/ky). The greatest changes occurred in two cores: one located near massive sulfide structures, and another near the spreading axis. Determinations of mean rates by the radiocarbon method and the nonequilibrium thorium method are in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the <2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humidity and wet and dry bulk densities were determined for bottom sediments of the Lena River marginal filter within a 700 km section from the outer boundary of the river delta. Earlier determinations of suspended matter concentration in water, material and grain-size composition and age of sediments were made along the same section. Sediment matter fluxes (accumulation rates), their changes in space and time (about 14 ka) were inferred from measurements of physical parameters. A correlation was found between the physical parameters of bottom sediments and changes in the Lena river marginal filter including those caused by sea-level fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The post-middle Miocene evolution of sedimentary patterns in the eastern equatorial Pacific Ocean has been deduced from a compilation and synthesis of CaCO3, opal, and nannofossil assemblage data from 11 sites drilled during Leg 138. Improvements in stratigraphic correlation and time scale development enabled the construction of lithostratigraphic and chronostratigraphic frameworks of exceptional quality. These frameworks, and the high sedimentation rates (often exceeding 4 cm/k.y.) provided a detailed and synoptic paleoceanographic view of a large and highly productive region. The three highlights that emerge are: (1) a middle late Miocene "carbonate crash" (Lyle et al., this volume); (2) a late Miocene-early Pliocene "biogenic bloom"; and (3) an early Pliocene "opal shift". During the carbonate crash, an interval of dissolution extending from -11.2 to 7.5 Ma, CaCO3 accumulation rates declined to near zero over much of the eastern equatorial Pacific, whereas opal accumulation rates remained substantially unchanged. The crash nadir, near 9.5 Ma, was marked by a brief shoaling of the regional carbonate compensation depth by more than 1400 m. The carbonate crash has been correlated over the entire tropical Pacific Ocean, and has been attributed to tectonically-induced changes in abyssal flow through the Panamanian seaway. The biogenic bloom extended from 6.7 to 4.5 Ma, and was characterized by an overall increase in biogenic accumulation and by a steepening of the latitudinal accumulation gradient toward the equator. The bloom has been observed over a large portion of the global ocean and has been linked to increased productivity. The final highlight, is a distinct and permanent shift in the locus of maximum opal mass accumulation rate at 4.4 Ma. This shift was temporally, and perhaps causally, linked to the final closure of the Panamanian seaway. Before 4.4 Ma, opal accumulation was greatest in the eastern equatorial Pacific Basin (near 0°N, 107°W). Since then, the highest opal fluxes in the equatorial Pacific have occurred in the Galapagos region (near 3°S, 92°W).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, understanding of ice sheet retreat within Pine Island Bay (PIB) following the Last Glacial Maximum (LGM) was based on seven radiocarbon dates and only fragmentary seafloor geomorphic evidence. During the austral summer 2009-2010, restricted sea ice cover allowed for the collection of 27 sediment cores from the outer PIB trough region. Combining these cores with data from prior cruises, over 133 cores have been used to conduct a detailed sedimentological facies analysis. These results, augmented by 23 new radiocarbon dates, are used to reconstruct the post-LGM deglacial history of PIB. Our results record a clear retreat stratigraphy in PIB composed of, from top to base; terrigenous sandy silt (distal glacimarine), pebbly sandy mud (ice-proximal glacimarine), and till. Initial retreat from the outer-continental shelf began shortly after the LGM and before 16.4 k cal yr BP, as a likely response to rising sea level. Bedforms in outer PIB document episodic retreat in the form of back-stepping grounding zone wedges and are associated with proximal glacimarine sediments. A sub-ice shelf facies is observed in central PIB and spans ~12.3-10.6 k cal yr BP. It is possible that widespread impingement of warm water onto the continental shelf caused an abrupt and widespread change from sub-ice shelf sedimentation to distal glacimarine sedimentation dominated by widespread dispersal of terrigenous silt between 7.8 and 7.0 k cal yr BP. The final phase of retreat ended before ~1.3 k cal yr BP, when the grounding line migrated to a location near the current ice margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon-14 determinations on box cores of calcareous ooze from the western and eastern equatorial Pacific suggest that patterns of mixed-layer ages, sedimentation rates, and mixed-layer thicknesses are controlled by gradients of carbonate dissolution and fertility, and by small-scale redeposition processes. Mixed-layer ages range from 3000 to 7000 years, with a mode between 4000 and 5000 years. Sedimentation rates range from 0.8 to 2.4 cm/1000 years. Mixed-layer depths, calculated according to the box model of mixing, range from 7 cm to 16 cm. Observed thicknesses are about one-fourth smaller than calculated ones.