943 resultados para Rehm-Weller equation
Resumo:
The two-body Dirac(Breit) equation with potentials associated to one-boson-exchanges with cutoff masses is solved for the deuteron and its observables calculated. The 16-component wave-function for the Jπ = 1+ state contains four independent radial functions which satisfy a system of four coupled differential equations of first order. This system is numerically integrated, from infinity towards the origin, by fixing the value of the deuteron binding energy and imposing appropriate boundary conditions at infinity. For the exchange potential of the pion, a mixture of direct plus derivative couplings to the nucleon is considered. We varied the pion-nucleon coupling constant, and the best results of our calculations agree with the lower values recently determined for this constant.
Resumo:
In this letter we discuss the (2 + 1)-dimensional generalization of the Camassa-Holm equation. We require that this generalization be, at the same time, integrable and physically derivable under the same asymptotic analysis as the original Camassa-Holm equation. First, we find the equation in a perturbative calculation in shallow-water theory. We then demonstrate its integrability and find several particular solutions describing (2 + 1) solitary-wave like solutions. © 1999 Published by Elsevier Science B.V. All rights reserved.
Improved numerical approach for the time-independent Gross-Pitaevskii nonlinear Schrödinger equation
Resumo:
In the present work, we improve a numerical method, developed to solve the Gross-Pitaevkii nonlinear Schrödinger equation. A particular scaling is used in the equation, which permits us to evaluate the wave-function normalization after the numerical solution. We have a two-point boundary value problem, where the second point is taken at infinity. The differential equation is solved using the shooting method and Runge-Kutta integration method, requiring that the asymptotic constants, for the function and its derivative, be equal for large distances. In order to obtain fast convergence, the secant method is used. © 1999 The American Physical Society.
Resumo:
We present an investigation of the nonlinear partial differential equations (PDE) which are asymptotically representable as a linear combination of the equations from the Camassa-Holm hierarchy. For this purpose we use the infinitesimal transformations of dependent and independent variables of the original PDE. This approach is helpful for the analysis of the systems of the PDE which can be asymptotically represented as the evolution equations of polynomial structure. © 2000 American Institute of Physics.
Resumo:
The Gross-Pitaevskii equation for Bose-Einstein condensation (BEC) in two space dimensions under the action of a harmonic oscillator trap potential for bosonic atoms with attractive and repulsive interparticle interactions was numerically studied by using time-dependent and time-independent approaches. In both cases, numerical difficulty appeared for large nonlinearity. Nonetheless, the solution of the time-dependent approach exhibited intrinsic oscillation with time iteration which is independent of space and time steps used in discretization.
Resumo:
We use a five-dimensional approach to Galilean covariance to investigate the non-relativistic Duffin-Kemmer-Petiau first-order wave equations for spinless particles. The corresponding representation is generated by five 6 × 6 matrices. We consider the harmonic oscillator as an example.
Resumo:
Exact solutions are found for the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions. The method works for the ground state or for the lowest orbital state with l = j - 1/2 , for any j.
Resumo:
The Bose-Einstein condensate of several types of trapped bosons at ultralow temperature was described using the coupled time dependent Gross-Pitaevskii equation. Both the stationary and time evolution problems were analyzed using this approach. The ground state stationary wave functions were found to be sharply peaked near the origin for attractive interatomic interaction for larger nonlinearity while for a repulsive interatomic interaction the wave function extends over a larger region of space.
Resumo:
The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling constant gs allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson exchange. The effective interaction in ladder approximation up to order g4 s is discussed in detail. It is shown that the effective interaction naturally yields the box counterterm required to be introduced ad hoc previously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional quantities.
The Dirac-Hestenes equation for spherical symmetric potentials in the spherical and Cartesian gauges
Resumo:
In this paper, using the apparatus of the Clifford bundle formalism, we show how straightforwardly solve in Minkowski space-time the Dirac-Hestenes equation - which is an appropriate representative in the Clifford bundle of differential forms of the usual Dirac equation - by separation of variables for the case of a potential having spherical symmetry in the Cartesian and spherical gauges. We show that, contrary to what is expected at a first sight, the solution of the Dirac-Hestenes equation in both gauges has exactly the same mathematical difficulty. © World Scientific Publishing Company.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We analyze here the spin and pseudospin symmetry for the antinucleon spectra solving the Dirac equation with scalar and vector Wood-Saxon potentials. In relativistic nuclear mean field theories where these potentials have large magnitudes and opposite signs we show that contrary to the nucleon case where pseudospin interaction is never very small and cannot be treated perturbatively, for antinucleon systems this interaction is perturbative and an exact pseudospin symmetry is possible. This result manifests the relativistic nature of the nuclear pseudospin symmetry. © 2009 American Institute of Physics.
Resumo:
Rational solutions of the Painlevé IV equation are constructed in the setting of pseudo-differential Lax formalism describing AKNS hierarchy subject to the additional non-isospectral Virasoro symmetry constraint. Convenient Wronskian representations for rational solutions are obtained by successive actions of the Darboux-Bäcklund transformations. ©2010 American Institute of Physics.
Resumo:
The asymptotic stability of the null solution of the equation ẋ(t) = -a(t)x(t)+b(t)x([t]) with argument [t], where [t] designates the greatest integer function, is studied by means of dichotomic maps. © 2010 Academic Publications.
Resumo:
Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.