950 resultados para Refined nonlinear non-conforming triangular plate element
Resumo:
A multibeam antenna study based on Butler network will be undertaken in this document. These antenna designs combines phase shift systems with multibeam networks to optimize multiple channel systems. The system will work at 1.7 GHz with circular polarization. Specifically, result simulations and measurements of 3 element triangular subarray will be shown. A 45 element triangular array will be formed by the subarrays. Using triangular subarrays, side lobes and crossing points are reduced.
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
A three node, displacement based, acoustic element is developed. In order to avoid spurious rotational modes, a higher order stiffness is introduced. The higher order stiffness is developed from an incompatible strain field which computes element volume changes under nodal rotational displacements fields. The higher order strain satisfies the IET requirements, non affecting convergence. The higher order stiffness is modulated, element by element, with a factor. Thus, the displacement based formulation is capable of placing the spurious rotational modes over the range of physical compressional modes that can be accurately captured by the mesh.
Resumo:
Corrosion of steel bars embedded in concrete has a great influence on structural performance and durability of reinforced concrete. Chloride penetration is considered to be a primary cause of concrete deterioration in a vast majority of structures. Therefore, modelling of chloride penetration into concrete has become an area of great interest. The present work focuses on modelling of chloride transport in concrete. The differential macroscopic equations which govern the problem were derived from the equations at the microscopic scale by comparing the porous network with a single equivalent pore whose properties are the same as the average properties of the real porous network. The resulting transport model, which accounts for diffusion, migration, advection, chloride binding and chloride precipitation, consists of three coupled differential equations. The first equation models the transport of chloride ions, while the other two model the flow of the pore water and the heat transfer. In order to calibrate the model, the material parameters to determine experimentally were identified. The differential equations were solved by means of the finite element method. The classical Galerkin method was employed for the pore solution flow and the heat transfer equations, while the streamline upwind Petrov Galerkin method was adopted for the transport equation in order to avoid spatial instabilities for advection dominated problems. The finite element codes are implemented in Matlab® . To retrieve a good understanding of the influence of each variable and parameter, a detailed sensitivity analysis of the model was carried out. In order to determine the diffusive and hygroscopic properties of the studied concretes, as well as their chloride binding capacity, an experimental analysis was performed. The model was successfully compared with experimental data obtained from an offshore oil platform located in Brazil. Moreover, apart from the main objectives, numerous results were obtained throughout this work. For instance, several diffusion coefficients and the relation between them are discussed. It is shown how the electric field set up between the ionic species depends on the gradient of the species’ concentrations. Furthermore, the capillary hysteresis effects are illustrated by a proposed model, which leads to the determination of several microstructure properties, such as the pore size distribution and the tortuosity-connectivity of the porous network. El fenómeno de corrosión del acero de refuerzo embebido en el hormigón ha tenido gran influencia en estructuras de hormigón armado, tanto en su funcionalidad estructural como en aspectos de durabilidad. La penetración de cloruros en el interior del hormigón esta considerada como el factor principal en el deterioro de la gran mayoría de estructuras. Por lo tanto, la modelización numérica de dicho fenómeno ha generado gran interés. El presente trabajo de investigación se centra en la modelización del transporte de cloruros en el interior del hormigón. Las ecuaciones diferenciales que gobiernan los fenómenos a nivel macroscópico se deducen de ecuaciones planteadas a nivel microscópico. Esto se obtiene comparando la red porosa con un poro equivalente, el cual mantiene las mismas propiedades de la red porosa real. El modelo está constituido por tres ecuaciones diferenciales acopladas que consideran el transporte de cloruros, el flujo de la solución de poro y la transferencia de calor. Con estas ecuaciones se tienen en cuenta los fenómenos de difusión, migración, advección, combinación y precipitación de cloruros. El análisis llevado a cabo en este trabajo ha definido los parámetros necesarios para calibrar el modelo. De acuerdo con ellas, se seleccionaron los ensayos experimentales a realizar. Las ecuaciones diferenciales se resolvieron mediante el método de elementos finitos. El método clásico de Galerkin se empleó para solucionar las ecuaciones de flujo de la solución de poro y de la transferencia de calor, mientras que el método streamline upwind Petrov-Galerkin se utilizó para resolver la ecuación de transporte de cloruros con la finalidad de evitar inestabilidades espaciales en problemas con advección dominante. El código de elementos finitos está implementado en Matlab® . Con el objetivo de facilitar la comprensión del grado de influencia de cada variable y parámetro, se realizó un análisis de sensibilidad detallado del modelo. Se llevó a cabo una campaña experimental sobre los hormigones estudiados, con el objeto de obtener sus propiedades difusivas, químicas e higroscópicas. El modelo se contrastó con datos experimentales obtenidos en una plataforma petrolera localizada en Brasil. Las simulaciones numéricas corroboraron los datos experimentales. Además, durante el desarrollo de la investigación se obtuvieron resultados paralelos a los planteados inicialmente. Por ejemplo, el análisis de diferentes coeficientes de difusión y la relación entre ellos. Así como también se observó que el campo eléctrico establecido entre las especies iónicas disueltas en la solución de poro depende del gradiente de concentración de las mismas. Los efectos de histéresis capilar son expresados por el modelo propuesto, el cual conduce a la determinación de una serie de propiedades microscópicas, tales como la distribución del tamaño de poro, además de la tortuosidad y conectividad de la red porosa.
Resumo:
After the experience gained during the past years it seems clear that nonlinear analysis of bridges are very important to compute ductility demands and to localize potential hinges. This is specially true for irregular bridges in which it is not clear weather or not it is possible to use a linear computation followed by a correction using a behaviour factor. To simplify the numerical effort several approximate methods have been proposed. Among them, the so-called Dynamic Plastic Hinge Method in which an evolutionary shape function is used to reduce the structure to a single degree of freedom system seems to mantein a good balance between accuracy and simplicity. This paper presents results obtained in a parametric study conducted under the auspicies of PREC-8 european research program.
Resumo:
We establish a refined version of the Second Law of Thermodynamics for Langevin stochastic processes describing mesoscopic systems driven by conservative or non-conservative forces and interacting with thermal noise. The refinement is based on the Monge-Kantorovich optimal mass transport and becomes relevant for processes far from quasi-stationary regime. General discussion is illustrated by numerical analysis of the optimal memory erasure protocol for a model for micron-size particle manipulated by optical tweezers.
Resumo:
It is well known that the evaluation of the influence matrices in the boundary-element method requires the computation of singular integrals. Quadrature formulae exist which are especially tailored to the specific nature of the singularity, i.e. log(*- x0)9 Ijx- JC0), etc. Clearly the nodes and weights of these formulae vary with the location Xo of the singular point. A drawback of this approach is that a given problem usually includes different types of singularities, and therefore a general-purpose code would have to include many alternative formulae to cater for all possible cases. Recently, several authors1"3 have suggested a type independent alternative technique based on the combination of standard Gaussian rules with non-linear co-ordinate transformations. The transformation approach is particularly appealing in connection with the p.adaptive version, where the location of the collocation points varies at each step of the refinement process. The purpose of this paper is to analyse the technique in eference 3. We show that this technique is asymptotically correct as the number of Gauss points increases. However, the method possesses a 'hidden' source of error that is analysed and can easily be removed.
Resumo:
The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.
Resumo:
Non linear transformations are a good alternative for the numerical evaluation of singular and quasisingular integrals appearing in Boundary Element Method specially in the p-adaptive version. Some aspects of its numerical implementation in 2-D Potential codes is discussed and some examples are shown.
Resumo:
The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.
Resumo:
An innovative dissipative multi-beam network for triangular arrays of three radiating elements is proposed. This novel network provides three orthogonal beams in θ0 elevation angle and a fourth one in the broadside steering direction. The network is composed of 90º hybrid couplers and fixed phase shifters. In this paper, a relation between network components, radiating element distance and beam steering directions will be shown. Application of the proposed dissipative network to the triangular cells of three radiating elements that integrate the intelligent antenna GEODA will be exhibited. This system works at 1.7 GHz, it has a 60º single radiating element beamwidth and a distance between array elements of 0.57λ. Both beam patterns, theoretical and simulated, obtained with the network will be depicted. Moreover, the whole system, dissipative network built with GEODA cell array, has been measured in the anechoic chamber of the Radiation Group of Technical University of Madrid, demonstrating expected performance
Resumo:
We review recent computational results for hexagon patterns in non- Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg-andau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the cou- pling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.
Resumo:
We study the stability and dynamics of non-Boussinesq convection in pure gases ?CO2 and SF6? with Prandtl numbers near Pr? 1 and in a H2-Xe mixture with Pr= 0.17. Focusing on the strongly nonlinear regime we employ Galerkin stability analyses and direct numerical simulations of the Navier-Stokes equations. For Pr ? 1 and intermediate non-Boussinesq effects we find reentrance of stable hexagons as the Rayleigh number is increased. For stronger non-Boussinesq effects the usual, transverse side-band instability is superseded by a longitudinal side-band instability. Moreover, the hexagons do not exhibit any amplitude instability to rolls. Seemingly, this result contradicts the experimentally observed transition from hexagons to rolls. We resolve this discrepancy by including the effect of the lateral walls. Non-Boussinesq effects modify the spiral defect chaos observed for larger Rayleigh numbers. For convection in SF6 we find that non-Boussinesq effects strongly increase the number of small, compact convection cells and with it enhance the cellular character of the patterns. In H2-Xe, closer to threshold, we find instead an enhanced tendency toward roll-like structures. In both cases the number of spirals and of targetlike components is reduced. We quantify these effects using recently developed diagnostics of the geometric properties of the patterns.
Resumo:
While non-Boussinesq hexagonal convection patterns are known to be stable close to threshold (i.e. for Rayleigh numbers R ? Rc ), it has often been assumed that they are always unstable to rolls for slightly higher Rayleigh numbers. Using the incompressible Navier?Stokes equations for parameters corresponding to water as the working fluid, we perform full numerical stability analyses of hexagons in the strongly nonlinear regime ( ? (R ? Rc )/Rc = O(1)). We find ?re-entrant? behaviour of the hexagons, i.e. as is increased they can lose and regain stability. This can occur for values of as low as = 0.2. We identify two factors contributing to the re-entrance: (i) far above threshold there exists a hexagon attractor even in Boussinesq convection as has been shown recently and (ii) the non-Boussinesq effects increase with . Using direct simulations for circular containers we show that the re-entrant hexagons can prevail even for sidewall conditions that favour convection in the form of competing stable rolls. For sufficiently strong non-Boussinesq effects hexagons even become stable over the whole -range considered, 0 6 6 1.5.