786 resultados para Ramsar wetland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new instrument and method are described that allow the hydraulic conductivities of highly permeable porous materials, such as gravels in constructed wetlands, to be determined in the field. The instrument consists of a Mariotte siphon and a submersible permeameter cell with manometer take-off tubes, to recreate in-situ the constant head permeameter test typically used with excavated samples. It allows permeability to be measured at different depths and positions over the wetland. Repeatability obtained at fixed positions was good (normalised standard deviation of 1–4%), and results obtained for highly homogenous silica sand compared well when the sand was retested in a lab permeameter (0.32 mm.s–1 and 0.31 mm.s–1 respectively). Practical results have a ±30% associated degree of uncertainty because of the mixed effect of natural variation in gravel core profiles, and interstitial clogging disruption during insertion of the tube into the gravel. This error is small, however, compared to the orders of magnitude spatial variations detected. The technique was used to survey the hydraulic conductivity profile of two constructed wetlands in the UK, aged 1 and 15 years respectively. Measured values were high (up to 900 mm.s –1) and varied by three orders of magnitude, reflecting the immaturity of the wetland. Detailed profiling of the younger system suggested the existence of preferential flow paths at a depth of 200 mm, corresponding to the transition between more coarse and less coarse gravel layers (6–12 mm and 3–6 mm respectively), and transverse drift towards the outlet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the state of the art in measuring, modeling, and managing clogging in subsurface-flow treatment wetlands. Methods for measuring in situ hydraulic conductivity in treatment wetlands are now available, which provide valuable insight into assessing and evaluating the extent of clogging. These results, paired with the information from more traditional approaches (e.g., tracer testing and composition of the clog matter) are being incorporated into the latest treatment wetland models. Recent finite element analysis models can now simulate clogging development in subsurface-flow treatment wetlands with reasonable accuracy. Various management strategies have been developed to extend the life of clogged treatment wetlands, including gravel excavation and/or washing, chemical treatment, and application of earthworms. These strategies are compared and available cost information is reported. © 2012 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clogging is a major operational and maintenance issue associated with the use of subsurface flow wetlands for wastewater treatment, and can ultimately limit the lifetime of the system. This review considers over two decades of accumulated knowledge regarding clogging in both vertical and horizontal subsurface flow treatment wetlands. The various physical, chemical and biological factors responsible for clogging are identified and discussed. The occurrence of clogging is placed into the context of various design and operational parameters such as wastewater characteristics, upstream treatment processes, intermittent or continuous operation, influent distribution, and media type. This information is then used to describe how clogging develops within, and subsequently impacts, common variants of subsurface flow treatment wetland typically used in the U.S., U.K., France and Germany. Comparison of these systems emphasized that both hydraulic loading rate and solids loading rate need to be considered when designing systems to operate robustly, i.e. hydraulic overloading makes horizontal-flow tertiary treatment systems in the U.K. more susceptible to clogging problems than vertical-flow primary treatment systems in France. Future research should focus on elucidating the underlying mechanisms of clogging as they relate to the design, operation, and maintenance of subsurface flow treatment wetlands. © 2010 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throughout the Biscayne Bay watershed, existing coastal wetland communities have been cut off from sheet flow for decades. With the expectation that reconnection of these wetlands to upstream water sources would alter existing hydrologic conditions and recreate a more natural sheet flow to Biscayne National Park, a demonstration project on freshwater rediversion was undertaken. The objectives of the project were to document the effects of freshwater diversion on: (a) swamp and nearshore water chemistry and hydrology; (b) soil development processes; (c) macrophyte and benthic algal community composition, structure and production; (d) abundance of epiphytic and epibenthic invertebrates; (e) zonation, production, and phenology of primary producers in the nearshore environment, and (f) exchanges of nutrients and particulates between nearshore and mangrove ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water management has altered both the natural timing and volume of freshwater delivered to Everglades National Park. This is especially true for Taylor Slough and the C-111 basin, as hypersaline events in Florida Bay have been linked to reduced freshwater flow in this area. In light of recent efforts to restore historical flows to the eastern Everglades, an understanding of the impact of this hydrologic shift is needed in order to predict the trajectory of restoration. I conducted a study to assess the importance of season, water chemistry, and hydrologic conditions on the exchange of nutrients in dwarf and fringe mangrove wetlands along Taylor Slough. I also performed mangrove leaf decomposition studies to determine the contribution of biotic and abiotic processes to mass loss, the effect of salinity and season on degradation rates, and the importance of this litter component as a rapid source of nutrients. ^ Dwarf mangrove wetlands consistently imported total nutrients (C, N, and P) and released NO2− +NO3 −, with enhanced release during the dry season. Ammonium flux shifted from uptake to release over the study period. Dissolved phosphate activity was difficult to discern in either wetland, as concentrations were often below detection limits. Fluxes of dissolved inorganic nitrogen in the fringe wetland were positively related to DIN concentrations. The opposite was found for total nitrogen in the fringe wetland. A dynamic budget revealed a net annual export of TN to Florida Bay that was highest during the wet season. Simulated increases and decreases in freshwater flow yielded reduced exports of TN to Florida Bay as a result of changes in subsystem and water flux characteristics. Finally, abiotic processes yielded substantial nutrient and mass losses from senesced leaves with little influence of salinity. Dwarf mangrove leaf litter appeared to be a considerable source of nutrients to the water column of this highly oligotrophic wetland. To summarize, nutrient dynamics at the subsystem level were sensitive to short-term changes in hydrologic and seasonal conditions. These findings suggest that increased freshwater flow has the potential to lead to long-term, system-level changes that may reach as far as eastern Florida Bay. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maintenance of species richness is often a priority in the management of nature reserves, where consumptive use of resources is generally prohibited. The purpose of this research was to improve management by understanding the vegetation dynamics in the lowlands of Nepal. The objectives were to determine vegetation associations in relation to environments and human-induced disturbances that affect vegetation dynamics on floodplains, where upstream barrages had altered flooding patterns, and consumptive use of plant resources was influencing natural processes. Floodplain vegetation in relation to physical environments and disturbances were studied along transects, perpendicular to the course of the Mahakali River in the western Terai, Nepal. Forest structural changes were studied for three years in ten plots. A randomized split-block experiment with nine burning and grazing treatments was performed in seasonally flooded grasslands. A semi-structured questionnaire was used to assess people's socio-economic status, natural resource use patterns and conservation attitudes. ^ Elevation, soil organic matter, nitrogen, percentage of sand and grazing intensity were significant in delineating herbaceous vegetation assemblages, whereas elevation and livestock grazing were significant in defining forest type boundaries. On the floodplain islands, highly grazed Dalbergia sissoo-Acacia catechu forests were devoid of understory woody vegetation, but the lightly grazed D. sissoo-mixed forests had a well-developed second canopy layer, comprising woody species other than D. sissoo and A. catechu. In grasslands, species richness and biomass production were highest at intermediate disturbance level represented by the lightly grazed and ungrazed early-burned treatments. Ethnicity, education and resource use patterns were important in influencing conservation attitudes. A succession towards the mixed forests would occur in D. sissoo-dominated floodplain forests, where dams and barrages reduce flooding and associated fluvial processes, and if livestock grazing is stopped, as occasionally suggested by nature conservationists. In seasonally flooded grasslands, early burning with moderate grazing would enhance the species diversity and productivity. There is a need to implement a participatory integrated wetland management plan, to include community development, education and off farm income generation, to assure participatory conservation and management of wetlands in Nepal. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Florida Everglades, tree islands are conspicuous heterogeneous elements in a complex wetland landscape. I investigated the effects of increased freshwater flow in southern Everglades seasonally flooded tree islands, and characterized biogeochemical interactions among tree islands and the marsh landscape matrix, specifically examining hydrologic flows of nitrogen (N), and landscape N sequestration capacity. I utilized ecological trajectories of key ecosystem variables to differentiate effects of increased sheetflow and hydroperiod. I utilized stable isotope analyses and nutrient content of tree island ecosystem components to test the hypothesis that key processes in tree island nitrogen cycling would favor ecosystem N sequestration. I combined estimates of tree island ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic inputs of N to quantify the net sequestration of N by a seasonally flooded tree island. ^ Results show that increased freshwater flow to seasonally flooded tree islands promoted ecosystem oligotrophy, whereas reduced flows allowed some plant species to cycle P less efficiently. As oligotrophy is a defining parameter of Everglades wetlands, and likely promotes belowground production and peat development, reintroducing freshwater flow from an upstream canal had a favorable effect on ecosystem dynamics of tree islands in the study area. Important factors influencing the stable isotopic composition of nitrogen and carbon were: (1) a contribution to soil N by soil invertebrates, animal excrement, and microbes, (2) a possible NO3 source from an upstream canal and an "open" ecosystem N cycle, and (3) greater availability of phosphorus in tree islands relative to the marsh landscape, suggesting that tree island N cycling favors N sequestration. Hydrologic sources of N were dominated by surface water loads of NO3- and NH 4+, and an important soil N transformation promoting the net loss of surface water DIN was nitrate immobilization associated with soils and surficial leaf litter. The net inorganic N sequestration capacity of a seasonally flooded tree island was 50 g yr-1 m -2. Thus, tree islands likely have an important function in landscape sequestration of inorganic N, and may reduce significant anthropogenic N loads to downstream coastal systems. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Everglades are undergoing the world largest wetland restoration project with the aim of returning this system to hydrological conditions in place prior to anthropogenic modifications. Therefore, it is essential to know what these pristine conditions were. In this work, molecular marker (biomarker) distributions and carbon stable isotopic signatures in sediment samples were employed to assess historical environmental changes in Florida Bay over approximately the last 4000 years. Two biomarkers of terrestrial plants, particularly for mangroves (taraxerol and C29 n-alkane), combined with two seagrass proxies (the Paq and the C25/C 27 n-alkan-2-one ratio) revealed a sedimentary environmental shift from freshwater marshes to mangrove swamps and then to seagrass dominated marine ecosystems, likely as a result of sea-level rise in Florida Bay since the Holocene. The maximum values for the Paq and the C 25/C27 n-alkan-2-ones occurred during the 20th century, suggesting that the greatest abundance of seagrass cover is a recent rather than a historical, long-term phenomenon. The greater oscillation in frequency and amplitude for the biomarkers after 1900 potentially reflects an ecosystem under increasing anthropogenic stress. Several algal biomarkers such as C20 highly branched isoprenoids (HBIs), C 25 HBIs and dinosterol indicative of cyanobacteria, diatom and dinoflagellate organic matter inputs respectively, increased dramatically in the latter part of the 20th century and were attributed to recent anthropogenic changes in Florida Bay. ^ The highlight of this work is the development of HBIs as paleo-proxies. As biomarkers of diatoms, the C25 HBIs in the core from the central bay displayed the highest concentration at mid depth, reflecting strong historical inputs of diatom-derived sedimentary OM during that period. In fact, the depth profile of C25 HBIs coincided quite well with historical variations in diatom abundance and variations in diatom species composition in central Florida Bay based on the results of fossil diatom species analysis by microscopy. This study provides evidence that some C25 HBIs can be applied as biomarkers for certain diatom inputs in paleoenvironmental studies. The sources of C20 and C30 HBIs and their potential applicability as paleo-proxies were also investigated and their sources assessed based on their δ13C distributions. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Permeable reactive barriers (PRB) are constructed from soil solid amendments to support the growth of bacteria that are capable of degrading organic contaminants. The objective of this study was to identify low-cost soil solid amendments that could retard the movement of trichloroethylene (TCE) while serving as long-lived carbon sources to foster its biodegradation in shallow groundwater through the use of a PRB. The natural amendments high in organic carbon content such as eucalyptus mulch, compost, wetland peat, organic humus were compared based on their geophysical characteristics, such as pHw, porosity and total organic carbon (TOC), and as well as TCE sorption potentials. The pHw values were within neutral range except for pine bark mulch and wetland peat. All other geophysical characteristics of the amendments showed suitability for use in a PRB. While the Freundlich model showed better fit for compost and pine bark mulch, the linear sorption model was adequate for eucalyptus mulch, wetland peat and Everglades muck within the concentration range studied (0.2-0.8 mg/L TCE). According to these results, two composts and eucalyptus mulch were selected for laboratory column experiments to evaluate their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. The columns were monitored for pH, ORP, TCE degradation, longevity of nutrients and soluble TOC to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to DCEs; however, the inoculation with the TCE-degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by-product concentration, mostly in the form of DCEs and VC followed by a slow degradation to ethylene. Of the tested amendments eucalyptus mulch was the most effective at supporting the TCE dechlorination. The experimental results of TCE sequential dechlorination took place in eucalyptus mulch and commercial compost from Savannah River Site columns were then simulated using the Hydrus-1D model. The simulations showed good fit with the experimental data. The results suggested that sorption and degradation were the dominant fate and transport mechanisms for TCE and DCEs in the column, supporting the use of these amendments in a permeable reactive barrier to remediate the TCE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite lake sensitivity to climate change, few Florida paleolimnological studies have focused on changes in hydrology. Evidence from Florida vegetation histories raise questions about long-term hydrologic history of Florida lakes, and a 25-year limnological dataset revealed recent climate-driven effects on Lake Annie. The objectives of this research are (1) to use modern diatom assemblages to develop methods for reconstruction of climatic and anthropogenic change (2) to reconstruct both long-term and recent histories of Lake Annie using diatom microfossils. Paleoenvironmental reconstruction models were developed from diatom assemblages of various habitat types from modern lakes. Plankton and sediment assemblages were similar, but epiphytes were distinct, suggesting differences in sediment delivery from different parts of the lakes. Relationships between a variety of physical and chemical data and the diatoms from each habitat type were explored. Total phosphorus (TP), pH, and color were found to be the most relevant variables for reconstruction, with sediment and epiphyte assemblages having the strongest relationships to those variables, six calibration models were constructed from the combination of these habitat types and environmental variables. Reconstructions utilizing the weighted averaging models in this study may be used to directly reveal TP, color, and pH changes from a sediment record, which might be suggestive of hydrologic change as well. These variables were reconstructed from the diatom record from both a long-term (11,000 year) and short-term (100 year) record and showed an interaction between climate-driven and local land-use impacts on Lake Annie. The long-term record begins with Lake Annie as a wetland, then the lake filled to a high stand around 4000 years ago. A period of relative stability after that point was interrupted near the turn of the last century by subtle changes in diatom communities that indicate acidification. Abrupt changes in the diatom communities around 1970 AD suggest recovery from acidification, but concurrent hydrologic change intensified anthropogenic effects on the lake. Diatom evidence for alkalization and phosphorus loading correspond to changes seen in the limnological record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In topographically flat wetlands, where shallow water table and conductive soil may develop as a result of wet and dry seasons, the connection between surface water and groundwater is not only present, but perhaps the key factor dominating the magnitude and direction of water flux. Due to their complex characteristics, modeling waterflow through wetlands using more realistic process formulations (integrated surface-ground water and vegetative resistance) is an actual necessity. This dissertation focused on developing an integrated surface – subsurface hydrologic simulation numerical model by programming and testing the coupling of the USGS MODFLOW-2005 Groundwater Flow Process (GWF) package (USGS, 2005) with the 2D surface water routing model: FLO-2D (O’Brien et al., 1993). The coupling included the necessary procedures to numerically integrate and verify both models as a single computational software system that will heretofore be referred to as WHIMFLO-2D (Wetlands Hydrology Integrated Model). An improved physical formulation of flow resistance through vegetation in shallow waters based on the concept of drag force was also implemented for the simulations of floodplains, while the use of the classical methods (e.g., Manning, Chezy, Darcy-Weisbach) to calculate flow resistance has been maintained for the canals and deeper waters. A preliminary demonstration exercise WHIMFLO-2D in an existing field site was developed for the Loxahatchee Impoundment Landscape Assessment (LILA), an 80 acre area, located at the Arthur R. Marshall Loxahatchee National Wild Life Refuge in Boynton Beach, Florida. After applying a number of simplifying assumptions, results have illustrated the ability of the model to simulate the hydrology of a wetland. In this illustrative case, a comparison between measured and simulated stages level showed an average error of 0.31% with a maximum error of 2.8%. Comparison of measured and simulated groundwater head levels showed an average error of 0.18% with a maximum of 2.9%. The coupling of FLO-2D model with MODFLOW-2005 model and the incorporation of the dynamic effect of flow resistance due to vegetation performed in the new modeling tool WHIMFLO-2D is an important contribution to the field of numerical modeling of hydrologic flow in wetlands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a new method was developed based on aqueous phenylation, purge-and-trap preconcentration, gas chromatography (GC) separation, and detection by atomic fluorescence spectrometry (AFS) or inductively coupled plasma mass spectrometry (ICPMS). This technique is suitable for simultaneous determination of trace or ultratrace levels of CH3Hg+ and CH3CH2Hg+ in environmental samples. Method detection limits were 0.03 ng/L for both CH3Hg+ and CH3CH2Hg+ when AFS was used as the detector and 0.02 and 0.01 ng/L for CH3Hg+ and CH 3CH2Hg+ with ICPMS, respectively. The new method has the additional benefits of being free from interference by Cl - and dissolved organic matter. Using the method developed, both CH3Hg+ and CH3CH2Hg+ were detected in a number of soil and sediment samples collected from the Florida Everglades. The identity of CH3CH2Hg+ was verified by purge-and-trap-GC/MS analysis. The possibility of analytical artifact was excluded by using stable isotope tracer technique in combination with ICPMS detection. CH3CH 2Hg+ in the soil samples analyzed was at ng/g level, similar to that of CH3Hg+. The prevalence of CH 3CH2Hg+ in the soil of the Florida Everglades suggests that ethylation plays an important role in the geochemistry of Hg in this wetland. Soil incubation and sawgrass culture experiments using stable isotope tracers revealed that CH3Hg+ was mainly produced by microbial activities under anaerobic conditions, agreeing well with the general understanding of methylation mechanisms of Hg in the environment. Ethylation of Hg was not confirmed in these experiments, indicating that ethylation of Hg most probably follows different mechanisms in comparison to methylation. Further experiments revealed that trace levels of ethyllead species were able to transfer ethyl group to Hg in both deionized water and freshwater matrixes, producing CH3CH2Hg+. This might partially account for the occurrence of CH3CH2Hg+ in the relatively pristine environment of the Florida Everglades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distinctive karstic, freshwater wetlands of the northern Caribbean and Central American region support the prolific growth of calcite-rich periphyton mats. Aside from the Everglades, very little research has been conducted in these karstic wetlands, which are increasingly threatened by eutrophication. This study sought to (i) test the hypothesis that water depth and periphyton total phosphorus (TP) content are both drivers of periphyton biomass in karstic wetland habitats in Belize, Mexico and Jamaica, (ii) provide a taxonomic inventory of the periphytic diatom species in these wetlands and (iii) examine the relationship between periphyton mat TP concentration and diatom assemblage at Everglades and Caribbean locations. ^ Periphyton biomass, nutrient and diatom assemblage data were generated from periphyton mat samples collected from shallow, marl-based wetlands in Belize, Mexico and Jamaica. These data were compared to a larger dataset collected from comparable sites within Everglades National Park. A diatom taxonomic inventory was conducted on the Caribbean samples and a combination of ordination and weighted-averaging modeling techniques were used to compare relationships between periphyton TP concentration, periphyton biomass and diatom assemblage composition among the locations. ^ Within the Everglades, periphyton biomass showed a negative correlation with water depth and mat TP, while periphyton mat percent organic content was positively correlated with these two variables. These patterns were also exhibited within the Belize, Mexico and Jamaica locations, suggesting that water depth and periphyton TP content are both drivers of periphyton biomass in karstic wetland systems within the northern Caribbean region. ^ A total of 146 diatom species representing 39 genera were recorded from the three Caribbean locations, including a distinct core group of species that may be endemic to this habitat type. Weighted averaging models were produced that effectively predicted mat TP concentration from diatom assemblages for both Everglades (R2=0.56) and Caribbean (R2=0.85) locations. There were, however, significant differences among Everglades and Caribbean locations with respect to species TP optima and indicator species. This suggests that although diatoms are effective indicators of water quality in these wetlands, differences in species response to water quality changes can reduce the predictive power of these indices when applied across systems. ^