975 resultados para RNA-mediated resistamce
Resumo:
INTRODUCTION Human host immune response following infection with the new variant of A/H1N1 pandemic influenza virus (nvH1N1) is poorly understood. We utilize here systemic cytokine and antibody levels in evaluating differences in early immune response in both mild and severe patients infected with nvH1N1. METHODS We profiled 29 cytokines and chemokines and evaluated the haemagglutination inhibition activity as quantitative and qualitative measurements of host immune responses in serum obtained during the first five days after symptoms onset, in two cohorts of nvH1N1 infected patients. Severe patients required hospitalization (n = 20), due to respiratory insufficiency (10 of them were admitted to the intensive care unit), while mild patients had exclusively flu-like symptoms (n = 15). A group of healthy donors was included as control (n = 15). Differences in levels of mediators between groups were assessed by using the non parametric U-Mann Whitney test. Association between variables was determined by calculating the Spearman correlation coefficient. Viral load was performed in serum by using real-time PCR targeting the neuraminidase gene. RESULTS Increased levels of innate-immunity mediators (IP-10, MCP-1, MIP-1beta), and the absence of anti-nvH1N1 antibodies, characterized the early response to nvH1N1 infection in both hospitalized and mild patients. High systemic levels of type-II interferon (IFN-gamma) and also of a group of mediators involved in the development of T-helper 17 (IL-8, IL-9, IL-17, IL-6) and T-helper 1 (TNF-alpha, IL-15, IL-12p70) responses were exclusively found in hospitalized patients. IL-15, IL-12p70, IL-6 constituted a hallmark of critical illness in our study. A significant inverse association was found between IL-6, IL-8 and PaO2 in critical patients. CONCLUSIONS While infection with the nvH1N1 induces a typical innate response in both mild and severe patients, severe disease with respiratory involvement is characterized by early secretion of Th17 and Th1 cytokines usually associated with cell mediated immunity but also commonly linked to the pathogenesis of autoimmune/inflammatory diseases. The exact role of Th1 and Th17 mediators in the evolution of nvH1N1 mild and severe disease merits further investigation as to the detrimental or beneficial role these cytokines play in severe illness.
Resumo:
This study is aimed at evaluating the potential to detect human immunodeficiency virus (HIV) in amniotic fluid (AF) collected at delivery from 40 HIV-positive pregnant women. Thirty patients had a plasma viral load (VL) below 1,000 copies/mL at delivery. VL was positive in three AF samples. No significant association was found between the HIV-1 RNA in AF and the maternal plasma samples. There was no HIV vertical transmission detected.
Resumo:
Objective: Intimal hyperplasia (IH) is one of the leading causes of failure¦after vascular interventions. It involves the proliferation of smooth muscle¦cells (SMCs) and the production of extracellular fibrous matrix. Gap junctional¦communication, mediated by membrane connexins (Cx), participates to the¦control of proliferation and migration. In human and mice vessels, endothelial¦cells (ECs) express Cx37, Cx40 and Cx43, whereas SMCs are coupled by Cx43.¦We previously reported that Cx43 was increased in the SMCs of a human vein¦during the development of IH.¦In our experimental model of mice carotid artery ligation (CAL), luminal¦narrowing occurred by SMCs-rich neointima after 2-4 weeks of ligation.¦This experimental model of mice allows us to decipher the regulation of the¦cardiovascular connexins in the mouse.¦Methods: C57BL/6 mice were anesthetized and the left common carotid artery¦was dissected through a neck incision and ligated near the carotid bifurcation.¦The mice were then euthanized at 7, 14 and 28 days. Morphometric analyses¦were then performed with measurements of total area, lumen and intimal area¦and media thickness. Western blots, immunocytochemistry and quantitative¦RT-PCR were performed for Cx43, Cx40 and Cx37.¦Results: All animals recovered with no symptom of stroke. Morphometric¦analysis demonstrated that carotid ligation resulted in an initial increase (after¦7 days) of the total vessel area followed by its reduction (after 28 days). This¦phenomena was associated with a progressive increase in the intimal area and a¦consecutive decrease of the lumen. The media thickness was also increased after¦14 and 28 days. This neointima formation was associated to a marked increase¦in the expression of Cx43 at both protein and RNA levels. Concomitantly,¦Cx40 and Cx37 protein expression were reduced in the endothelium. This was¦confirmed by en face analyses showing reduced Cx37 and Cx40 levels in the¦endothelial cells covering the lesion.¦Conclusion: This study assessed the regulation of the cardiovascular connexins¦in the development of IH. This model will allow us to characterize the¦involvement of gap junctions in the IH. In turn, this understanding is¦instrumental for the development of new therapeutical tools, as well as for¦the evaluation of the effects of drugs and gene therapies of this disease for which¦there is no efficient therapy available.
Resumo:
The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
Resumo:
Exposure to perinatal hypoxia results in alteration of the adult pulmonary circulation, which is linked among others to alterations in K channels in pulmonary artery (PA) smooth muscle cells. In particular, large conductance Ca-activated K (BKCa) channels protein expression and activity were increased in adult PA from mice born in hypoxia compared with controls. We evaluated long-term effects of perinatal hypoxia on the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway-mediated activation of BKCa channels, using isoproterenol, forskolin, and dibutyryl-cAMP. Whole-cell outward current was higher in pulmonary artery smooth muscle cells from mice born in hypoxia compared with controls. Spontaneous transient outward currents, representative of BKCa activity, were present in a greater proportion in pulmonary artery smooth muscle cells of mice born in hypoxia than in controls. Agonists induced a greater relaxation in PA of mice born in hypoxia compared with controls, and BKCa channels contributed more to the cAMP/PKA-mediated relaxation in case of perinatal hypoxia. In summary, perinatal hypoxia enhanced cAMP-mediated BKCa channels activation in adult murine PA, suggesting that this pathway could be a potential target for modulating adult pulmonary vascular tone after perinatal hypoxia.
Resumo:
Recently, it has been proposed that drug permeation is essentially carrier-mediated only and that passive lipoidal diffusion is negligible. This opposes the prevailing hypothesis of drug permeation through biological membranes, which integrates the contribution of multiple permeation mechanisms, including both carrier-mediated and passive lipoidal diffusion, depending on the compound's properties, membrane properties, and solution properties. The prevailing hypothesis of drug permeation continues to be successful for application and prediction in drug development. Proponents of the carrier-mediated only concept argue against passive lipoidal diffusion. However, the arguments are not supported by broad pharmaceutics literature. The carrier-mediated only concept lacks substantial supporting evidence and successful applications in drug development.
Resumo:
CONTEXT Adipose tissue hypoxia and endoplasmic reticulum (ER) stress may link the presence of chronic inflammation and macrophage infiltration in severely obese subjects. We previously reported the up-regulation of TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in adipose tissue of severely obese type 2 diabetic subjects. OBJECTIVES The objective of the study was to examine TWEAK and Fn14 adipose tissue expression in obesity, severe obesity, and type 2 diabetes in relation to hypoxia and ER stress. DESIGN In the obesity study, 19 lean, 28 overweight, and 15 obese nondiabetic subjects were studied. In the severe obesity study, 23 severely obese and 35 control subjects were studied. In the type 2 diabetes study, 11 type 2 diabetic and 36 control subjects were studied. The expression levels of the following genes were analyzed in paired samples of sc and visceral adipose tissue: Fn14, TWEAK, VISFATIN, HYOU1, FIAF, HIF-1a, VEGF, GLUT-1, GRP78, and XBP-1. The effect of hypoxia, inflammation, and ER stress on the expression of TWEAK and Fn14 was examined in human adipocyte and macrophage cell lines. RESULTS Up-regulation of TWEAK/Fn14 and hypoxia and ER stress surrogate gene expression was observed in sc and visceral adipose tissue only in our severely obese cohort. Hypoxia modulates TWEAK or Fn14 expression in neither adipocytes nor macrophages. On the contrary, inflammation up-regulated TWEAK in macrophages and Fn14 expression in adipocytes. Moreover, TWEAK had a proinflammatory effect in adipocytes mediated by the nuclear factor-kappaB and ERK but not JNK signaling pathways. CONCLUSIONS Our data suggest that TWEAK acts as a pro-inflammatory cytokine in the adipose tissue and that inflammation, but not hypoxia, may be behind its up-regulation in severe obesity.
Resumo:
Schistosomiasis, classified by the World Health Organization as a neglected tropical disease, is an intravascular parasitic disease associated to a chronic inflammatory state. Evidence implicating inflammation in vascular dysfunction continues to mount, which, broadly defined, reflects a failure in the control of intracellular Ca2+ and consequently, vascular contraction. Therefore, we measured aorta contraction induced by 5-hydroxytryptamine (5-HT) and endothelin-1 (ET-1), two important regulators of vascular contraction. Isometric aortic contractions were determined in control and Schistosoma mansoni-infected mice. In the infected animals, 5-HT induced a 50% higher contraction in relation to controls and we also observed an increased contraction in response to Ca2+ mobilisation from sarcoplasmic reticulum. Nevertheless, Rho kinase inhibition reduced the contraction in response to 5-HT equally in both groups, discarding an increase of the contractile machinery sensitivity to Ca2+. Furthermore, no alteration was observed for contractions induced by ET-1 in both groups. Our data suggest that an immune-vascular interaction occurs in schistosomiasis, altering vascular contraction outside the mesenteric portal system. More importantly, it affects distinct intracellular signalling involved in aorta contraction, in this case increasing 5-HT receptor signalling.
Overexpression of SMARCE1 is associated with CD8+ T-cell infiltration in early stage ovarian cancer.
Resumo:
T-lymphocyte infiltration in ovarian tumors has been linked to a favorable prognosis, hence, exploring the mechanism of T-cell recruitment in the tumor is warranted. We employed a differential expression analysis to identify genes over-expressed in early stage ovarian cancer samples that contained CD8 infiltrating T-lymphocytes. Among other genes, we discovered that TTF1, a regulator of ribosomal RNA gene expression, and SMARCE1, a factor associated with chromatin remodeling were overexpressed in first stage CD8+ ovarian tumors. TTF1 and SMARCE1 mRNA levels showed a strong correlation with the number of intra-tumoral CD8+ cells in ovarian tumors. Interestingly, forced overexpression of SMARCE1 in SKOV3 ovarian cancer cells resulted in secretion of IL8, MIP1b and RANTES chemokines in the supernatant and triggered chemotaxis of CD8+ lymphocytes in a cell culture assay. The potency of SMARCE1-mediated chemotaxis appeared comparable to that caused by the transfection of the CXCL9 gene, coding for a chemokine known to attract T-cells. Our analysis pinpoints TTF1 and SMARCE1 as genes potentially involved in cancer immunology. Since both TTF1 and SMARCE1 are involved in chromatin remodeling, our results imply an epigenetic regulatory mechanism for T-cell recruitment that invites deciphering.
Resumo:
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.
Resumo:
RÉSUMÉ Le but d'un traitement antimicrobien est d'éradiquer une infection bactérienne. Cependant, il est souvent difficile d'en évaluer rapidement l'efficacité en utilisant les techniques standard. L'estimation de la viabilité bactérienne par marqueurs moléculaires permettrait d'accélérer le processus. Ce travail étudie donc la possibilité d'utiliser le RNA ribosomal (rRNA) à cet effet. Des cultures de Streptococcus gordonii sensibles (parent Wt) et tolérants (mutant Tol 1) à l'action bactéricide de la pénicilline ont été exposées à différents antibiotiques. La survie bactérienne au cours du temps a été déterminée en comparant deux méthodes. La méthode de référence par compte viable a été comparée à une méthode moléculaire consistant à amplifier par PCR quantitative en temps réel une partie du génome bactérien. La cible choisie devait refléter la viabilité cellulaire et par conséquent être synthétisée de manière constitutive lors de la vie de la bactérie et être détruite rapidement lors de la mort cellulaire. Le choix s'est porté sur un fragment du gène 16S-rRNA. Ce travail a permis de valider ce choix en corrélant ce marqueur moléculaire à la viabilité bactérienne au cours d'un traitement antibiotique bactéricide. De manière attendue, les S. gordonii sensibles à la pénicilline ont perdu ≥ 4 log10 CFU/ml après 48 heures de traitement par pénicilline alors que le mutant tolérant Tol1 en a perdu ≥ 1 log10 CFU/ml. De manière intéressant, la quantité de marqueur a augmenté proportionnellement au compte viable durant la phase de croissance bactérienne. Après administration du traitement antibiotique, l'évolution du marqueur dépendait de la capacité de la bactérie à survivre à l'action de l'antibiotique. Stable lors du traitement des souches tolérantes, la quantité de marqueur détectée diminuait de manière proportionnelle au compte viable lors du traitement des souches sensibles. Cette corrélation s'est confirmée lors de l'utilisation d'autres antibiotiques bactéricides. En conclusion, l'amplification par PCR du RNA ribosomal 16S permet d'évaluer rapidement la viabilité bactérienne au cours d'un traitement antibiotique en évitant le recours à la mise en culture dont les résultats ne sont obtenus qu'après plus de 24 heures. Cette méthode offre donc au clinicien une évaluation rapide de l'efficacité du traitement, particulièrement dans les situations, comme le choc septique, où l'initiation sans délai d'un traitement efficace est une des conditions essentielles du succès thérapeutique. ABSTRACT Assessing bacterial viability by molecular markers might help accelerate the measurement of antibiotic-induced killing. This study investigated whether ribosomal RNA (rRNA) could be suitable for this purpose. Cultures of penicillin-susceptible and penicillin-tolerant (Tol1 mutant) Streptococcus gordonii were exposed to mechanistically different penicillin and levofloxacin. Bacterial survival was assessed by viable counts, and compared to quantitative real-time PCR amplification of either the 16S-rRNA genes (rDNA) or the 16S rRNA, following reverse transcription. Penicillin-susceptible S. gordonii lost ≥ 4 log10 CFU/ml of viability over 48 h of penicillin treatment. In comparison, the Toll mutant lost ≤ 1 log10 CFU/ml. Amplification of a 427-base fragment of 16S rDNA yielded amplicons that increased proportionally to viable counts during bacterial growth, but did not decrease during drug-induced killing. In contrast, the same 427-base fragment amplified from 16S rDNA paralleled both bacterial growth and drug-induced killing. It also differentiated between penicillin-induced killing of the parent and the Toll mutant (≥4 log10 CFU/ml and ≤1 lo10 CFU/ml, respectively), and detected killing by mechanistically unrelated levofloxacin. Since large fragments of polynucleotides might be degraded faster than smaller fragments the experiments were repeated by amplifying a 119-base region internal to the origina1 427-base fragment. The amount of 119-base amplicons increased proportionally to viability during growth, but remained stable during drug treatment. Thus, 16S rRNA was a marker of antibiotic-induced killing, but the size of the amplified fragment was critical to differentiate between live and dead bacteria.
Resumo:
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.
Resumo:
The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.
Resumo:
Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause serious risks to the infected host.
The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis
Resumo:
Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.