969 resultados para RHODIUM-CATALYZED HYDROFORMYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) poses a major worldwide public health problem. The increasing prevalence of TB, the emergence of multi-drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, and the devastating effect of co-infection with HIV have highlighted the urgent need for the development of new antimycobacterial agents. Analysis of the complete genome sequence of M. tuberculosis shows the presence of genes involved in the aromatic amino acid biosynthetic pathway. Experimental evidence that this pathway is essential for M. tuberculosis has been reported. The genes and pathways that are essential for the growth of the microorganisms make them attractive drug targets since inhibiting their function may kill the bacilli. We have previously cloned and expressed in the soluble form the fourth shikimate pathway enzyme of the M. tuberculosis, the aroE-encoded shikimate dehydrogenase (mtSD). Here, we present the purification of active recombinant aroE-encoded M. tuberculosis shikimate dehydrogenase (mtSD) to homogeneity, N-terminal sequencing, mass spectrometry, assessment of the oligomeric state by gel filtration chromatography, determination of apparent steady-state kinetic parameters for both the forward and reverse directions, apparent equilibrium constant, thermal stability, and energy of activation for the enzyme-catalyzed chemical reaction. These results pave the way for structural and kinetic studies, which should aid in the rational design of mtSD inhibitors to be tested as antimycobacterial agents. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The protein C pathway plays an important role in the control and regulation of the blood coagulation cascade and prevents the propagation of the clotting process on the endothelium surface. In physiological systems, protein C activation is catalyzed by thrombin, which requires thrombomodulin as a cofactor. The protein C activator from Agkistrodon contortrix contortrix acts directly on the zymogen of protein C converting it into the active form, independently of thrombomodulin. Suitable crystals of the protein C activator from Agkistrodon contortrix contortrix were obtained from a solution containing 2 M ammonium sulfate as the precipitant and these crystals diffracted to 1.95 angstrom resolution at a synchrotron beamline. The crystalline array belongs to the monoclinic space group C2 with unit cell dimensions a=80.4, b = 63.3 and c = 48.2 angstrom, alpha = gamma = 90.0 degrees and beta = 90.8 degrees. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A colorimetric method has been developed and optimized to measure L-malic acid in samples of fruit juices and wine. This method is based on oxidation of the analyte, catalyzed by malate dehydrogenase (MDH) from dry baker's yeast, and in combination with the reduction of a tetrazolium salt (MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). In the present study, the method exhibited sensitivity in the range of 500-4000 mu M of L-malic acid in the reaction cuvette, with the lower detection limit of 6.7-10(-2) g/L, the upper limit of 53.6.10(-2) g/L and a maximum standard deviation of only 2.5 % for the analyzed samples. The MDH activity from baker's yeast was also optimized, the enzyme showed a high stability at pH=8.0-9.0 and the activity was maintained completely at temperatures up to 40 degrees C for 1 hour. The results show that the colorimetric method using enzymatic preparations from dry baker's yeast is a simple and low-cost method with possibility of wide application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanostructural characteristics of acid-catalyzed sonogels are studied along the aging process at 60 degreesC in saturated conditions and after the CO, supercritical extraction (aerogel). The structural evolution was studied by means of small-angle X-ray scattering (SAXS) and UV-Visible absorption techniques. The sonogel exhibits a mass fractal structure in a length scale between zeta - 1/q(0) similar to 5.3 and a(1) similar to 1/q(m) similar to 0.22 nm, as the length scale probed by SAXS. The apparent mass fractal dimension lightly increases from 2.0 for fresh gel until 2.2 for 14 days aging in wet conditions. The UV absorption also increases with the aging time in wet conditions. Both observations are consistent with the syneresis process accompanying the polycondensation progress during aging in saturated conditions. For long aging times, the wet sonogels show a light transition from a mass to a surface fractal. in a very small interval of the length scale, developing an extremely rough surface with fractal dimension D-S similar to 2.9, the fractal characteristics of the sonogels practically do not change with the alcohol exchange. With the CO2 supercritical extraction (aerogel). The interval in the length scale in which the surface fractal is defined increases, while the surface fractal dimension diminishes to D-S similar to 2.5. The mass fractal characteristics are less apparent in the aerogels. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinetic evidence for the role of divalent metal ions in the phosphotransferase activity of polidocanol-solubilized alkaline phosphatase from osseous plate is reported. Ethylenediamine tetreacetate, 1,10-phenanthrolin, and Chelex-100 were used to prepare metal-depleted alkaline phosphatase. Except for Chelex-100, either irreversible inactivation of the enzyme or incomplete removal of metal ions occurred. After Chelex-100 treatment, full hydrolase activity of alkaline phosphatase was recovered upon addition of metal ions. on the other hand, only 20% of transferase activity was restored with 0.1 mu M ZnCl2, in the presence of 1.0 M diethanolamine as phosphate acceptor. In the presence of 0.1 mM MgCl2, the recovery of transferase activity increased to 63%. Independently of the phosphate acceptor used, the transferase activity of the metal-depleted alkaline phosphatase was fully restored by 8 mu M ZnCl2 plus 5 mM MgCl2. In the presence of diethanolamine as phosphate acceptor, manganese, cobalt, and calcium ions did nor stimulate the transferase activity. However, manganese and cobalt-enzyme catalyzed the transfer of phosphate to glycerol and glucose. (C) 1997 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and nitrogen adsorption techniques were used to study the temperature and time structural evolution of the nanoporosity in silica xerogels prepared from acid- and ultrasound-catalyzed hydrolysis of tetraetboxysilane (TEOS). Silica xerogels present a structure of nanopores of fully random shape, size, and distribution, which can be described by an exponential correlation function gamma(r) = exp (-r/a), where a is the correlation distance, as predicted by the Debye, Anderson, and Brumberger (DAB) model. The mean pore size was evaluated as about 1.25 nm from SAXS and about 1.9 nm from nitrogen adsorption. The nanopore elimination in TEOS sonohydrolysis-derived silica xerogels is readily accelerated at temperatures around 900 degrees C probably by the action of a viscous flow mechanism. The nanopore elimination process takes place in such a way that the pore volume fraction and the specific surface are reduced while the mean pore size remains constant. (c) 2005 WILEY-VCH Verlag GmbH S Co. KGaA, Weinheim.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mosquito larvae are believed to be capable of digesting chitin, an insoluble polysaccharide of N-acetylglucosamine, for their nutritional benefit. Studies based on physiological and biochemical assays were conducted in order to detect the presence of chitinase activities in the gut of the detritus-feeding Aedes aegypti larvae. Larvae placed for 24 h in suspensions of chitin azure were able to digest the ingested chitin. Semi-denaturing PAGE using glycol chitin and two fluorogenic substrate analogues showed the presence of two distinct chitinase activities: an endochitinase that catalyzed the hydrolysis of chitin and an endochitinase that cleaved the short substrates [4MU(GlcNAc)(3)] and [4MU(GlcNAc)(2)] that hydrolyzed the chitobioside [4MU(GlcNAc)(2)]. The endochitinase had an extremely broad pH-activity against glycol chitin and chitin azure, pH ranging from 4.0 to 10.0. When the substrate [4MU(GlcNAc)(3)] was used, two activities were observed at pH ranges 4.0-6.0 and 8.0-10.0. Chitinase activity against [4MU(GlcNAc)(3)] was detected throughout the gut with the highest specific activity in the hindgut. The pH of the gut contents was determined by observing color changes in gut after feeding the larvae with color indicator dyes. It was observed a correlation between the pH observed in the gut of feeding larvae (pH 10-6.0) and the optimum pH for gut chitinase activities. In this work, we report that gut chitinases may be involved in the digestion of chitin-containing structures and also in the partial degradation of the chitinous peritrophic matrix in the hindgut. (C) 2003 Elsevier B.V. All rights reserved.