940 resultados para RESOLVED INFRARED-SPECTROSCOPY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inorganic pigment comprises a host lattice, which is part of the chromophore component (usually a transition metal cation) and possible components modifiers, which stabilize, add or restate the properties pigments. Among the materials with spinel, ferrites, and the chromite stand out, because they have broad technological importance in the area of materials, applicability, pigments, catalytic hydrogenation, thin film, ceramic tiles, among others. The present work, pigments containing CuFe2O4, CuCr2O4,e CuFeCrO4, were synthesized by a method that makes use of gelatin as organic precursor using their application to ceramic pigments. The pigments were characterized by X-ray diffraction (XRD), Infrared spectroscopy, scanning electron microscopy (SEM) spectroscopy in the UV-visible and Colorimetry. The results confirmed the feasibility of the synthetic route used, with respect to powders synthesized, there is the formation of spinel phase from 500°C, with an increase in crystallinity and the formation of other phases. The pigments were shown to be crystalline and the desired phases were obtained. The copper chromite have hues ranging from green to black according to the calcination temperature, while the copper chromite doped with iron had brownish. The ferrites showed copper color and darker brown to black, which may indicate an interesting factor because of the importance of black pigment

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development and study of detectors sensitive to flammable combustible and toxic gases at low cost is a crucial technology challenge to enable marketable versions to the market in general. Solid state sensors are attractive for commercial purposes by the strength and lifetime, because it isn t consumed in the reaction with the gas. In parallel, the use of synthesis techniques more viable for the applicability on an industrial scale are more attractive to produce commercial products. In this context ceramics with spinel structure were obtained by microwave-assisted combustion for application to flammable fuel gas detectors. Additionally, alternatives organic-reducers were employed to study the influence of those in the synthesis process and the differences in performance and properties of the powders obtained. The organic- reducers were characterized by Thermogravimetry (TG) and Derivative Thermogravimetry (DTG). After synthesis, the samples were heat treated and characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), analysis by specific area by BET Method and Scanning Electron Microscopy (SEM). Quantification of phases and structural parameters were carried through Rietveld method. The methodology was effective to obtain Ni-Mn mixed oxides. The fuels influenced in obtaining spinel phase and morphology of the samples, however samples calcined at 950 °C there is just the spinel phase in the material regardless of the organic-reducer. Therefore, differences in performance are expected in technological applications when sample equal in phase but with different morphologies are tested

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structural changes in waste for zeolites synthesis are subject of many studies carried out in the synthesis of molecular sieves. These materials are named molecular sieves because they have well defined pore sizes and they have the capacity of select molecules by its size. In this work, it was studied the synthesis processes of two types of molecular sieves: pillared acid clays using as starting material one natural montmorillonite clay and the synthesis of zeolites from a silico-aluminous residue. This residue is a byproduct of the extraction of lithium -spodumene. The preparation of pillared acid clays was performed in two steps: 1° acid treatment of clay samples (time and temperature studies) and 2°pilarization of them with Al13 (Keggin ion). The temperature and acid concentration affect the removal of cations in the structure and porosity of the material obtained. The analysis of X-ray diffraction (XRD) and infrared spectroscopy (IR), showed that increasing the severity of the acid treatment compromises the structural material. Also the pore size distribution is approximately uniform. Despite presenting a structural disorganization, the samples were pillared. As evidenced by XRD increasing the basal spacing, specific area and uniform porosity by adsorption of N2. Regarding the microporous molecular sieves were synthesized zeolites A and NaP1 from a silico-aluminous residue, a byproduct of extracting lithium. The temperature and time of agitation during the synthesis were the most important factors for obtaining zeolite A. The aging of the gel and the highest crystallization time promoted the formation of zeolite NaP1 using a Si / Al ratio = 3.2

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nickel-bases catalysts have been used in several reform reactions, such as in the partial oxidation of methane to obtain H2 or syngas (H2 + CO). High levels of conversion are usually obtained using this family of catalysts, however, their deactivation resulting from carbon deposition still remains a challenge. Different approaches have been tested aiming at minimizing this difficulty, including the production of perovskites and related structures using modern synthesis methods capable of producing low cost materials with controlled microstructural characteristics at industrial scale. To establish grounds for comparison, in the present study LaNixFe1-xO3 (x=0, 0.3 or 0.7) perovskites were prepared following the Pechini method and by microwave assisted self-combustion. All samples were sub sequently calcined at 900 °C to obtain the target phase. The resulting ceramic powders were characterized by thermogravimetric analysis, infrared spectroscopy, X ray diffraction, specific area and temperature programmed reduction tests. Calcined samples were also used in the partial oxidation reaction of methane to evaluate the level of conversion, selectivity and carbon deposition. The results showed that the calcined samples were crystalline and the target phase was formed regardless of the synthesis method. According to results obtained by Rietveld refinement, we observed the formation of 70.0% of LaNi0.3Fe0.7O3 and 30.0% of La2O3 for samples LN3F7-900- P, LN3F7-900-M and 41,6% of LaNi0.7Fe0.3O3, 30.7% of La2NiO4 and 27.7% of La2O3 for samples LN7F3-900-P and LN7F3-900-M.Temperature-programmed profiles of the LaNiO3 sample revealed the presence of a peak around 510 °C, whereas the LaFeO3 sample depicted a peak above 1000°C. The highest l evel of methane conversion was obtained for LaNiO3 synthesized by the Pechini method. Overall, catalysts prepared by the Pechini method depicted better conversion levels compared to those produced by microwave assisted self-combustion

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic oxides with ABO3 structure, where A represents a rare earth element or an alkaline metal and B is a transition metal from group VIII of the periodic table are potential catalysts for oxidation and good candidates for steam reforming reaction. Different methods have been considered for the synthesis of the oxide materials with perovskite structure to produce a high homogeneous material with low amount of impurities and low calcination temperatures. In the current work, oxides with the LaNiO3 formula had been synthesized using the method of the polymeric precursors. The thermal treatment of the materials took place at 300 ºC for 2h. The material supported in alumina and/or zirconia was calcined at 800 ºC temperature for 4h. The samples had been characterized by the following techniques: thermogravimetry; infrared spectroscopy; X-ray diffraction; specific surface area; distribution of particle size; scanning electron microscopy and thermo-programmed reduction. The steam reforming reaction was carried out in a pilot plant using reducing atmosphere in the reactor with a mixture of 10% H2-Argon, a mass about 5g of catalyst, flowing at 50 mL.min-1. The temperature range used was 50 - 1000 oC with a heating rate of 10 oC.min-1. A thermal conductivity detector was used to analyze the gas after the water trapping, in order to permit to quantify the consumption of hydrogen for the lanthanum nickelates (LaNiO3). The results showed that lanthanum nickelate were more efficient when supported in alumina than when supported in zirconia. It was observed that the methane conversion was approximately 100% and the selectivity to hydrogen was about 70%. In all cases were verified low selectivity to CO and CO2

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water