992 resultados para RECOGNITION ELEMENT
Resumo:
Background: Tuberculosis (TB) is an enduring health problem worldwide and the emerging threat of multidrug resistant (MDR) TB and extensively drug resistant (XDR) TB is of particular concern. A better understanding of biomarkers associated with TB will aid to guide the development of better targets for TB diagnosis and for the development of improved TB vaccines. Methods: Recombinant proteins (n = 7) and peptide pools (n = 14) from M. tuberculosis (M.tb) antigens associated with M.tb pathogenicity, modification of cell lipids or cellular metabolism, were used to compare T cell immune responses defined by IFN-gamma production using a whole blood assay (WBA) from i) patients with TB, ii) individuals recovered from TB and iii) individuals exposed to TB without evidence of clinical TB infection from Minsk, Belarus. Results: We identified differences in M.tb target peptide recognition between the test groups, i.e. a frequent recognition of antigens associated with lipid metabolism, e.g. cyclopropane fatty acyl phospholipid synthase. The pattern of peptide recognition was broader in blood from healthy individuals and those recovered from TB as compared to individuals suffering from pulmonary TB. Detection of biologically relevant M.tb targets was confirmed by staining for intracellular cytokines (IL-2, TNF-alpha and IFN-gamma) in T cells from non-human primates (NHPs) after BCG vaccination. Conclusions: PBMCs from healthy individuals and those recovered from TB recognized a broader spectrum of M.tb antigens as compared to patients with TB. The nature of the pattern recognition of a broad panel of M.tb antigens will devise better strategies to identify improved diagnostics gauging previous exposure to M.tb; it may also guide the development of improved TB-vaccines.
Resumo:
Finite element modeling can be a useful tool for predicting the behavior of composite materials and arriving at desirable filler contents for maximizing mechanical performance. In the present study, to corroborate finite element analysis results, quantitative information on the effect of reinforcing polypropylene (PP) with various proportions of nanoclay (in the range of 3-9% by weight) is obtained through experiments; in particular, attention is paid to the Young's modulus, tensile strength and failure strain. Micromechanical finite element analysis combined with Monte Carlo simulation have been carried out to establish the validity of the modeling procedure and accuracy of prediction by comparing against experimentally determined stiffness moduli of nanocomposites. In the same context, predictions of Young's modulus yielded by theoretical micromechanics-based models are compared with experimental results. Macromechanical modeling was done to capture the non-linear stress-strain behavior including failure observed in experiments as this is deemed to be a more viable tool for analyzing products made of nanocomposites including applications of dynamics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The propagation of axial waves in hyperelastic rods is studied using both time and frequency domain finite element models. The nonlinearity is introduced using the Murnaghan strain energy function and the equations governing the dynamics of the rod are derived assuming linear kinematics. In the time domain, the standard Galerkin finite element method, spectral element method, and Taylor-Galerkin finite element method are considered. A frequency domain formulation based on the Fourier spectral method is also developed. It is found that the time domain spectral element method provides the most efficient numerical tool for the problem considered.
Resumo:
A finite-element scheme based on a coupled arbitrary Lagrangian-Eulerian and Lagrangian approach is developed for the computation of interface flows with soluble surfactants. The numerical scheme is designed to solve the time-dependent Navier-Stokes equations and an evolution equation for the surfactant concentration in the bulk phase, and simultaneously, an evolution equation for the surfactant concentration on the interface. Second-order isoparametric finite elements on moving meshes and second-order isoparametric surface finite elements are used to solve these equations. The interface-resolved moving meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps in the material parameters. The lower-dimensional finite-element meshes for solving the surface evolution equation are part of the interface-resolved moving meshes. The numerical scheme is validated for problems with known analytical solutions. A number of computations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have been performed. The proposed scheme shows excellent conservation of fluid mass and of the total mass of the surfactant. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The nonlocal term in the nonlinear equations of Kirchhoff type causes difficulties when the equation is solved numerically by using the Newton-Raphson method. This is because the Jacobian of the Newton-Raphson method is full. In this article, the finite element system is replaced by an equivalent system for which the Jacobian is sparse. We derive quasi-optimal error estimates for the finite element method and demonstrate the results with numerical experiments.
Resumo:
The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.
Resumo:
In this paper, we use optical flow based complex-valued features extracted from video sequences to recognize human actions. The optical flow features between two image planes can be appropriately represented in the Complex plane. Therefore, we argue that motion information that is used to model the human actions should be represented as complex-valued features and propose a fast learning fully complex-valued neural classifier to solve the action recognition task. The classifier, termed as, ``fast learning fully complex-valued neural (FLFCN) classifier'' is a single hidden layer fully complex-valued neural network. The neurons in the hidden layer employ the fully complex-valued activation function of the type of a hyperbolic secant function. The parameters of the hidden layer are chosen randomly and the output weights are estimated as the minimum norm least square solution to a set of linear equations. The results indicate the superior performance of FLFCN classifier in recognizing the actions compared to real-valued support vector machines and other existing results in the literature. Complex valued representation of 2D motion and orthogonal decision boundaries boost the classification performance of FLFCN classifier. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a heterogeneous finite element method for the solution of a high-dimensional population balance equation, which depends both the physical and the internal property coordinates. The proposed scheme tackles the two main difficulties in the finite element solution of population balance equation: (i) spatial discretization with the standard finite elements, when the dimension of the equation is more than three, (ii) spurious oscillations in the solution induced by standard Galerkin approximation due to pure advection in the internal property coordinates. The key idea is to split the high-dimensional population balance equation into two low-dimensional equations, and discretize the low-dimensional equations separately. In the proposed splitting scheme, the shape of the physical domain can be arbitrary, and different discretizations can be applied to the low-dimensional equations. In particular, we discretize the physical and internal spaces with the standard Galerkin and Streamline Upwind Petrov Galerkin (SUPG) finite elements, respectively. The stability and error estimates of the Galerkin/SUPG finite element discretization of the population balance equation are derived. It is shown that a slightly more regularity, i.e. the mixed partial derivatives of the solution has to be bounded, is necessary for the optimal order of convergence. Numerical results are presented to support the analysis.
Resumo:
This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.
Resumo:
Urea-based molecular constructs are shown for the first time to be nonlinear optically (NLO) active in solution. We demonstrate self-assembly triggered large amplification and specific anion recognition driven attenuation of the NLO activity. This orthogonal modulation along with an excellent nonlinearity-transparency trade-off makes them attractive NLO probes for studies related to weak self-assembly and anion transportation by second harmonic microscopy.
Resumo:
Acoustic modeling using mixtures of multivariate Gaussians is the prevalent approach for many speech processing problems. Computing likelihoods against a large set of Gaussians is required as a part of many speech processing systems and it is the computationally dominant phase for Large Vocabulary Continuous Speech Recognition (LVCSR) systems. We express the likelihood computation as a multiplication of matrices representing augmented feature vectors and Gaussian parameters. The computational gain of this approach over traditional methods is by exploiting the structure of these matrices and efficient implementation of their multiplication. In particular, we explore direct low-rank approximation of the Gaussian parameter matrix and indirect derivation of low-rank factors of the Gaussian parameter matrix by optimum approximation of the likelihood matrix. We show that both the methods lead to similar speedups but the latter leads to far lesser impact on the recognition accuracy. Experiments on 1,138 work vocabulary RM1 task and 6,224 word vocabulary TIMIT task using Sphinx 3.7 system show that, for a typical case the matrix multiplication based approach leads to overall speedup of 46 % on RM1 task and 115 % for TIMIT task. Our low-rank approximation methods provide a way for trading off recognition accuracy for a further increase in computational performance extending overall speedups up to 61 % for RM1 and 119 % for TIMIT for an increase of word error rate (WER) from 3.2 to 3.5 % for RM1 and for no increase in WER for TIMIT. We also express pairwise Euclidean distance computation phase in Dynamic Time Warping (DTW) in terms of matrix multiplication leading to saving of approximately of computational operations. In our experiments using efficient implementation of matrix multiplication, this leads to a speedup of 5.6 in computing the pairwise Euclidean distances and overall speedup up to 3.25 for DTW.
Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems
Resumo:
An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present a fast learning neural network classifier for human action recognition. The proposed classifier is a fully complex-valued neural network with a single hidden layer. The neurons in the hidden layer employ the fully complex-valued hyperbolic secant as an activation function. The parameters of the hidden layer are chosen randomly and the output weights are estimated analytically as a minimum norm least square solution to a set of linear equations. The fast leaning fully complex-valued neural classifier is used for recognizing human actions accurately. Optical flow-based features extracted from the video sequences are utilized to recognize 10 different human actions. The feature vectors are computationally simple first order statistics of the optical flow vectors, obtained from coarse to fine rectangular patches centered around the object. The results indicate the superior performance of the complex-valued neural classifier for action recognition. The superior performance of the complex neural network for action recognition stems from the fact that motion, by nature, consists of two components, one along each of the axes.
Resumo:
Benzimidazole derivatives are well known for their antibacterial, antiviral, anticonvulsant, antihistaminic, anthelmintic and antidepressant activities. Benzimidazole's unique base-selective DNA recognition property has been studied widely. However, most of the early benzimidazole systems have been targeted towards the binding of duplex DNA. Here we have shown the evolution and progress of the design and synthesis of new benzimidazole systems towards selective recognition of the double-stranded DNA first. Then in order to achieve selective recognition of the G-quadruplex DNA and utilize their potential as future anti-cancer drug candidates, we have demonstrated their selective cytotoxicity towards the cancer cells and potent telomerase inhibition ability.
Resumo:
Faraday-type electromagnetic flow meters are employed for measuring the flow rate of liquid sodium in fast breeder reactors. The calibration of such flow meters, owing to the required elaborative arrangements is rather difficult. On the other hand, theoretical approach requires solution of two coupled electromagnetic partial differential equation with profile of the flow and applied magnetic field as the inputs. This is also quite involved due to the 3D nature of the problem. Alternatively, Galerkin finite element method based numerical solution is suggested in the literature as an attractive option for the required calibration. Based on the same, a computer code in Matlab platform has been developed in this work with both 20 and 27 node brick elements. The boundary conditions are correctly defined and several intermediate validation exercises are carried out. Finally it is shown that the sensitivities predicted by the code for flow meters of four different dimensions agrees well with the results given by analytical expression, thereby providing strong validation. Sensitivity for higher flow rates, for which analytical approach does not exist, is shown to decrease with increase in flow velocity.