936 resultados para Pulse width modulation
Resumo:
This paper deals with the design of a high data rate code-division multiple-access (CDMA) system under a speci¯ed jamming mar- gin speci¯cation as well as hardware and band-width limitations. Several choices had to be made in coming up with the design such as specify-ing the number of subcarriers, choice of spread-ing codes and the nature of the modulation.The rationale behind each of the choices made is given. Descriptions of transmitter and receiver are also included. Relevant simulations of cross-correlation are also provided.
Resumo:
Nuclear electro-magnetic pulse (NEMP) simulators which are used in the simulation of transient electromagnetic fields due to a high altitude nuclear detonation are generally excited with a double exponential high voltage pulse. This results in a current distribution on the wires of the simulator and hence a transient electric field in the working volume of the simulator where the test object is kept. It is found that for the simulator under study, the current distribution is non-uniform and so is the field distribution along the width of the simulator in the working volume. To make the current distribution uniform, several methods have been suggested and the results of these methods are analyzed and suitable conclusions are arrived at from those results.
Resumo:
A simplified energy‐level scheme is proposed for the photochemical cycle of the bacteriorhodopsin molecule. Rate equations are solved for the detailed light‐induced processes based on this model and the intensity‐induced population densities in various states of the molecule at steady state are computed which are used to obtain an analytic expression for the absorption coefficient of the modulation beam. Modulation of the probe laser‐beam transmission by the modulation‐laser‐beam intensity‐induced population changes is analyzed. It is predicted that for a probe beam at 412 nm up to 82% modulation can be achieved using a laser beam intensity of 3.2 W/cm2 at 570 nm. For temperatures ∼77 K, the transmission at 610 nm can be switched from zero to 81% for modulating laser intensity of 11 W/cm2. Construction of a spatial light modulator based on bacteriorhodopsin molecules is proposed and some of its features are discussed.
Resumo:
Modulation-doped two-dimensional hole gas structures consisting of a strained germanium channel on relaxed Ge0.7Si0.3 buffer layers were grown by molecular-beam epitaxy. Sample processing was optimized to substantially reduce the contribution from the parasitic conducting layers. Very high hall mobilities of 1700 cm2/V s for holes were observed at 295 K which are the highest reported to date for any kind of p-type silicon-based heterostructures. Hall measurements were carried out from 13 to 300 K to determine the temperature dependence of the mobility and carrier concentration. The carrier concentration at room temperature was 7.9×1011 cm−2 and decreased by only 26% at 13 K, indicating very little parallel conduction. The high-temperature mobility obeys a T−α behavior with α∼2, which can be attributed to intraband optical phonon scattering.
Resumo:
Optical parameters of chalcogenide glass multilayers with 12–15 nm modulation lengths prepared by thermal evaporation can be changed by laser irradiation. Photoluminescence (PL) studies were carried out on such nonirradiated and irradiated multilayered samples of a-Se/As2S3 (sublayer thickness of a-Se is 4–5 nm for one set of samples and 1–2 nm for the other set. However As2S3 sublayer thickness is 11–12 nm for both sets of samples.) PL intensity can be increased by several orders of magnitude by reducing the Se well layer (lower band gap) thickness and can be further increased by irradiating the samples with appropriate wavelengths in the range of the absorption edge. The broadening of luminescence bands takes place either with a decrease in Se layer thickness or with irradiation. The former is due to the change in interface roughness and defects because of the enhanced structural disorder while the latter is due to photoinduced interdiffusion. The photoinduced interdiffusion creates defects at the interface between Se and As2S3 by forming an As–Se–S solid solution. From the deconvoluted PL spectrum, it is shown that the peak PL intensity, full width half maximum, and the PL quantum efficiency of particular defects giving rise to PL, can be tuned by changing the sublayer thickness or by interdiffusion.
Resumo:
A second order transfer function with two poles and two zeros exhibits a step response characterized by a sudden rise to the steady state value, followed by oscillations around this steady state. With proper choice of the coefficients, it is possible to obtain transfer functions suitable for pulse transmission purposes.
Resumo:
The modified McMurray Inverter with Pulse Forming Network (PFN) has been explained. The current and voltage waveshapes of the PFN commutation ci rcuit have been compared with conventional L-commutation circuit. The design method of PFN has been explained. Advantages of this type of commutation have been discussed. Experimental results are given.
Resumo:
In this paper, we address the design of codes which achieve modulation diversity in block fading single-input single-output (SISO) channels with signal quantization at the receiver. With an unquantized receiver, coding based on algebraic rotations is known to achieve maximum modulation coding diversity. On the other hand, with a quantized receiver, algebraic rotations may not guarantee gains in diversity. Through analysis, we propose specific rotations which result in the codewords having equidistant component-wise projections. We show that the proposed coding scheme achieves maximum modulation diversity with a low-complexity minimum distance decoder and perfect channel knowledge. Relaxing the perfect channel knowledge assumption we propose a novel channel training/estimation technique to estimate the channel. We show that our coding/training/estimation scheme and minimum distance decoding achieves an error probability performance similar to that achieved with perfect channel knowledge.
Resumo:
This paper reports single pulse shock tube and ab initio studies on thermal decomposition of 2-fluoro and 2-chloroethanol at T=1000–1200 K. Both molecules have HX (X = F/Cl) and H2O molecular elimination channels. The CH3CHO formed by HX elimination is chemically active and undergoes secondary decomposition resulting in the formation of CH4, C2H6, and C2H4. A detailed kinetic simulation indicates that the formation of C2H4 could not be quantitatively explained as arising exclusively from secondary CH3CHO decomposition. Contributions from primary radical processes need to be considered to explain C2H4 quantitatively. Ab initio calculations on HX and H2O elimination reactions from the haloethanols at HF, MP2, and DFT levels with various basis sets up to 6/311++G**are reported. It is pointed out that due to strong correlations between A and Eα, comparison of these two parameters between experimental and theoretical results could be misleading.