998 resultados para Proton transfer
Resumo:
This study aimed to assess and evaluate the effects of Theileria equi infection on embryonic recovery, gestation and early embryonic loss. Thirteen Mangalarga Marchador Theileria equi positive donors (diagnosed through nested-PCR) and 40 embryos receptors were used. Donors were submitted to two embryo collections in two consecutive estrous cycles (GId); after, the same mares were treated with imidocarb dipropionate (1.2mg/kg IM.) in order to collect more embryos in two more estrous cycles (GIId). Receptors were divided into two groups (control and with treated) with 20 animals each, where one group was the control (GIr) and the other one (GIIr) treated with 1.2mg/kg IM of imidocarb dipropionate assessing the gestation rate at 15, 30, 45 and 60 days. After 52 embryo collections, the embryonic recovery rates were 53.84% (14/26) and 65.38% (17/26) (p> 0.05) for GId and GIId, respectively. The gestation rate was 70% (14/20) (p>0.05) at 15, 30, 45 and 60 days in group GIr and for GIIr was 85% (17/20) (p>0.05) at 15 days, 80% (16/20) (p>0.05) at 30, 45 and 60 days. The treatment with imidocarb dipropionate did not cause significant improvement in the reproductive efficiency at an ET program.
Resumo:
Abstract:Two ultrasound based fertility prediction methods were tested prior to embryo transfer (ET) and artificial insemination (AI) in cattle. Female bovines were submitted to estrous synchronization prior to ET and AI. Animals were scanned immediately before ET and AI procedure to target follicle and corpus luteum (CL) size and vascularity. In addition, inseminated animals were also scanned eleven days after insemination to target CL size and vascularity. All data was compared with fertility by using gestational diagnosis 35 days after ovulation. Prior to ET, CL vascularity showed a positive correlation with fertility, and no pregnancy occurred in animals with less than 40% of CL vascularity. Prior to AI and also eleven days after AI, no relationship with fertility was seen in all parameters analyzed (follicle and CL size and vascularity), and contrary, cows with CL vascularity greater than 70% exhibit lower fertility. In inseminated animals, follicle size and vascularity was positive related with CL size and vascularity, as shown by the presence of greater CL size and vascularity originated from follicle with also greater size and vascularity. This is the first time that ultrasound based fertility prediction methods were tested prior to ET and AI and showed an application in ET, but not in AI programs. Further studies are needed including hormone profile evaluation to improve conclusion.
Resumo:
Experiments were performed to determine average heat transfer coefficients and friction factors for turbulent flow through annular ducts with pin fins. The measurements were carried out by means of a double-pipe heat exchanger. The total number of pins attached to the inner wall of the annular region was 560. The working fluids were air, flowing in the annular channel, and water through the inner circular tube. The average heat transfer coefficients of the pinned air-side were obtained from the experimental determination of the overall heat transfer coefficients of the heat exchanger and from the knowledge of the average heat transfer coefficients of the circular pipe (water-side), which could be found in the pertinent literature. To attain fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner circular duct of the heat exchanger and the pin fins were made of brass. Due to the high thermal conductivity of the brass, the small tube thickness and water temperature variation, the surface of the internal tube was practically isothermal. The external tube was made of an industrial plastic which was insulated from the environment by means of a glass wool batt. In this manner, the outer surface of the annular channel can be considered adiabatic. The results are presented in dimensionless forms, in terms of average Nusselt numbers and friction factors as functions of the flow Reynolds number, ranging from 13,000 to 80,000. The pin fin efficiency, which depends on the heat transfer coefficient, is also determined as a function of dimensionless parameters. A comparison of the present results with those for smooth sections (without pins) is also presented. The purpose of such a comparison is to study the influence of the presence of the pins on the pressure drop and heat transfer rate.
Resumo:
This work studies the forced convection problem in internal flow between concentric annular ducts, with radial fins at the internal tube surface. The finned surface heat transfer is analyzed by two different approaches. In the first one, it is assumed one-dimensional heat conduction along the internal tube wall and fins, with the convection heat transfer coefficient being a known parameter, determined by an uncoupled solution. In the other way, named conjugated approach, the mathematical model (continuity, momentum, energy and K-epsilon equations) applied to tube annuli problem was numerically solved using finite element technique in a coupled formulation. At first time, a comparison was made between results obtained for the conjugated problem and experimental data, showing good agreement. Then, the temperature profiles under these two approaches were compared to each other to analyze the validity of the one-dimensional classical formulation that has been utilized in the heat exchanger design.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
This paper presents the experimental characterization of hydrodynamics and gas-liquid mass transfer in a three-phase fluidized bed containing polystyrene and nylon particles. The influence of gas and liquid velocities on phase holdups and volumetric gas-liquid mass transfer coefficient was investigated for flow conditions similar to those applied in biotechnological process. The phase holdups were obtained by the pressure profile technique. The volumetric gas-liquid mass transfer coefficient was obtained adjusting the experimental concentration profiles of dissolved oxygen in the liquid phase with the predictions of the axial dispersion model. According to experimental results the liquid holdup increases with the gas velocity, whereas the solid holdup decreases. The gas holdup increases significantly with the increase in gas velocity, and it shows for the three-phase fluidized bed comparable values or larger than those of bubble column. The volumetric gas-liquid mass transfer coefficient increases significantly with an increase in the air velocity for both bubble column and fluidized beds. In addition, in the operational condition of high liquid velocity, the presence of low-density particles in the bed increased the gas-liquid mass transfer, and thus the volumetric mass transfer coefficient values obtained in the fluidized bed were comparable or larger than those of bubble column.
Resumo:
In this work it is presented a systematic procedure for constructing the solution of a large class of nonlinear conduction heat transfer problems through the minimization of quadratic functionals like the ones usually employed for linear descriptions. The proposed procedure gives rise to an efficient and easy way for carrying out numerical simulations of nonlinear heat transfer problems by means of finite elements. To illustrate the procedure a particular problem is simulated by means of a finite element approximation.
Resumo:
In two-phase miniature and microchannel flows, the meniscus shape must be considered due to effects that are affected by condensation and/or evaporation and coupled with the transport phenomena in the thin film on the microchannel wall, when capillary forces drive the working fluid. This investigation presents an analytical model for microchannel condensers with a porous boundary, where capillary forces pump the fluid. Methanol was selected as the working fluid. Very low liquid Reynolds numbers were obtained (Re~6), but very high Nusselt numbers (Nu~150) could be found due to the channel size (1.5 mm) and the presence of the porous boundary. The meniscus calculation provided consistent results for the vapor interface temperature and pressure, as well as the meniscus curvature. The obtained results show that microchannel condensers with a porous boundary can be used for heat dissipation with reduced heat transfer area and very high heat dissipation capabilities.
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
Background: Lymphedema is a debilitating disorder with few treatment options. Clinical studies have shown that microvascular lymph node transfer may improve the lymphatic function of the affected limb. This study provides information about the clinical efficacy and safety of this procedure. Further, the biological background of this technique is clarified with an analysis of postoperative production of lymphatic growth factors and cytokines related to lymphangiogenesis. Patients and Methods: The effect of lymph node transfer to recipient and donor sites was analyzed with lymphoscintigraphy, limb circumference measurements, and appearance of clinical symptoms. Axillary seroma samples were analyzed from four patient groups: Axillary lymph node removal (ALND), Microvascular breast reconstruction (BR), lymph node transfer (LN) and combined lymph node transfer and breast reconstruction (LN-BR). Results: The postoperative lymphatic transport index was improved in 7/19 patients. Ten patients were able to reduce or discontinue compression therapy 6 - 24 months postoperatively. The donor lower limb lymphatic flow was slightly impaired (Ti >10) in 2 patients. No donor site lymphedema symptoms appeared during the 8 – 56-month follow-up. A high concentration of the VEGF-C protein was detected in the seroma fluid of all flap transfer groups. The concentration of the anti-inflammatory and anti-fibrotic cytokine IL-10 was increased in the LN-BR group samples when compared to the ALND or BR group. Conclusions: According to this preliminary study, the lymph node transfer seems to be beneficial for the lymphedema patients. However, a randomized study comparing the effect of BR and LN-BR is needed to evaluate the clinical efficacy of lymph node transfer. In addition, the effect of this surgery on the donor site needs to be studied further. The clinical effects of the lymph node transfer might be partly mediated by increased production of the lymphangiogenic growth factor (VEGF-C) as well as the anti-fibrotic cytokine (IL-10).
Resumo:
This Master’s Thesis deals with the topic of transfer pricing documentation in Finland and China. The goal of the research is to find what kind of differences exist in a single case company’s transfer pricing documentation when following Chinese or Finnish transfer pricing regulations. The study is carried out as a case study research. The theoretical framework consists of information from different transfer pricing topics and transfer pricing documentation regulations in China and Finland. The main research material was the case company’s transfer pricing documents with the support of open discus-sion with one of the case company’s employees. The study compared the 2009 and 2010 documents. The 2009 document was done based on the Finnish method while the 2010 document was based on the Chinese documentation principles. The conclusion made is that the content of the documents was heavily similar, while the main differences come in the way the content is presented and the level of detail used in the documents.
Resumo:
The purpose of this thesis is to study the international technology transfer of transition economy SME entrepreneurs to the developed countries. The research aims to characterize the phenomenon by studying Russian SME technology transfer to Finland with the research methods from case studies. In addition to characterizing the phenomenon, the research finds out factors that motivate Russian entrepreneurs to conduct international technology transfer and what are the challenges the Russian entrepreneurs face when they enter the Finnish business environment. The qualitative data was collected from six semi-structured interviews with the entrepreneurs and several secondary data sources, considering four different technology transfer cases. The data and the analysis showed that the case companies in Finland are mostly linked to manufacturing of physical products. The entrepreneurs are motivated to come to Finland mainly by the opportunities and support the Finnish business and innovation environment provides to the entrepreneurs and by the personal gain that they get by establishing the company in Finland. Major challenges in the process include time constraints and capital requirements, difficulties on achieving sales on the Finnish market and finding skilled personnel to support the Russian management and owners.
Resumo:
In photosynthesis, light energy is converted to chemical energy, which is consumed for carbon assimilation in the Calvin-Benson-Bassham (CBB) cycle. Intensive research has significantly advanced the understanding of how photosynthesis can survive in the ever-changing light conditions. However, precise details concerning the dynamic regulation of photosynthetic processes have remained elusive. The aim of my thesis was to specify some molecular mechanisms and interactions behind the regulation of photosynthetic reactions under environmental fluctuations. A genetic approach was employed, whereby Arabidopsis thaliana mutants deficient in specific photosynthetic protein components were subjected to adverse light conditions and assessed for functional deficiencies in the photosynthetic machinery. I examined three interconnected mechanisms: (i) auxiliary functions of PsbO1 and PsbO2 isoforms in the oxygen evolving complex of photosystem II (PSII), (ii) the regulatory function of PGR5 in photosynthetic electron transfer and (iii) the involvement of the Calcium Sensing Receptor CaS in photosynthetic performance. Analysis of photosynthetic properties in psbo1 and psbo2 mutants demonstrated that PSII is sensitive to light induced damage when PsbO2, rather than PsbO1, is present in the oxygen evolving complex. PsbO1 stabilizes PSII more efficiently compared to PsbO2 under light stress. However, PsbO2 shows a higher GTPase activity compared to PsbO1, and plants may partially compensate the lack of PsbO1 by increasing the rate of the PSII repair cycle. PGR5 proved vital in the protection of photosystem I (PSI) under fluctuating light conditions. Biophysical characterization of photosynthetic electron transfer reactions revealed that PGR5 regulates linear electron transfer by controlling proton motive force, which is crucial for the induction of the photoprotective non-photochemical quenching and the control of electron flow from PSII to PSI. I conclude that PGR5 controls linear electron transfer to protect PSI against light induced oxidative damage. I also found that PGR5 physically interacts with CaS, which is not needed for photoprotection of PSII or PSI in higher plants. Rather, transcript profiling and quantitative proteomic analysis suggested that CaS is functionally connected with the CBB cycle. This conclusion was supported by lowered amounts of specific calciumregulated CBB enzymes in cas mutant chloroplasts and by slow electron flow to PSI electron acceptors when leaves were reilluminated after an extended dark period. I propose that CaS is required for calcium regulation of the CBB cycle during periods of darkness. Moreover, CaS may also have a regulatory role in the activation of chloroplast ATPase. Through their diverse interactions, components of the photosynthetic machinery ensure optimization of light-driven electron transport and efficient basic production, while minimizing the harm caused by light induced photodamage.
Resumo:
Carbon monoxide diffusing capacity (DLCO) or transfer factor (TLCO) is a particularly useful test of the appropriateness of gas exchange across the lung alveolocapillary membrane. With the purpose of establishing predictive equations for DLCO using a non-smoking sample of the adult Brazilian population, we prospectively evaluated 100 subjects (50 males and 50 females aged 20 to 80 years), randomly selected from more than 8,000 individuals. Gender-specific linear prediction equations were developed by multiple regression analysis with single breath (SB) absolute and volume-corrected (VA) DLCO values as dependent variables. In the prediction equations, age (years) and height (cm) had opposite effects on DLCOSB (ml min-1 mmHg-1), independent of gender (-0.13 (age) + 0.32 (height) - 13.07 in males and -0.075 (age) + 0.18 (height) + 0.20 in females). On the other hand, height had a positive effect on DLCOSB but a negative one on DLCOSB/VA (P<0.01). We found that the predictive values from the most cited studies using predominantly Caucasian samples were significantly different from the actually measured values (P<0.05). Furthermore, oxygen uptake at maximal exercise (VO2max) correlated highly to DLCOSB (R = 0.71, P<0.001); this variable, however, did not maintain an independent role to explain the VO2max variability in the multiple regression analysis (P>0.05). Our results therefore provide an original frame of reference for either DLCOSB or DLCOSB/VA in Brazilian males and females aged 20 to 80 years, obtained from the standardized single-breath technique.
Resumo:
The use of gene therapy continues to be a promising, yet elusive, alternative for the treatment of cancer. The origins of cancer must be well understood so that the therapeutic gene can be chosen with the highest chance of successful tumor regression. The gene delivery system must be tailored for optimum transfer of the therapeutic gene to the target tissue. In order to accomplish this, we study models of G1 cell-cycle control in both normal and transformed cells in order to understand the reasons for uncontrolled cellular proliferation. We then use this information to choose the gene to be delivered to the cells. We have chosen to study p16, p21, p53 and pRb gene transfer using the pCL-retrovirus. Described here are some general concepts and specific results of our work that indicate continued hope for the development of genetically based cancer treatments.