974 resultados para Proton proton collisions


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The past few years have seen remarkable progress in the development of laser-based particle accelerators. The ability to produce ultrabright beams of multi-megaelectronvolt protons routinely has many potential uses from engineering to medicine, but for this potential to be realized substantial improvements in the performances of these devices must be made. Here we show that in the laser-driven accelerator that has been demonstrated experimentally to produce the highest energy protons, scaling laws derived from fluid models and supported by numerical simulations can be used to accurately describe the acceleration of proton beams for a large range of laser and target parameters. This enables us to evaluate the laser parameters needed to produce high-energy and high-quality proton beams of interest for radiography of dense objects or proton therapy of deep-seated tumours.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 mu m diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 mu m and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3 +/- 1 g/cm(3) core with diameter 85 +/- 10 mu m. Scaling simulations show that protons > 50 MeV are required to diagnose asymmetry in ignition scale conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of the plasma density scale length on the production of MeV protons from thin foil targets irradiated at I lambda (2) = 5 x 10(19) Wcm(-2) has been studied. With an unperturbed foil, protons with energy >20 MeV were formed in an exponential energy spectrum with a temperature of 2.5 +/- 0.3 MeV. When a plasma with a scale length of 100 mum was preformed on the back of the foil, the maximum proton energy was reduced to

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular beam cooled HCl was state selected by two-photon excitation of the V (1) summation operator(0(+)) [v=9,11-13,15], E (1) summation operator(0(+)) [v=0], and g (3) summation operator(-)(0(+)) [v=0] states through either the Q(0) or Q(1) lines of the respective (1,3) summation operator(0(+))<--<--X (1) summation operator(0(+)) transition. Similarly, HBr was excited to the V (1) summation operator(0(+)) [v=m+3, m+5-m+8], E (1) summation operator(0(+)) [v=0], and H (1) summation operator(0(+)) [v=0] states through the Q(0) or Q(1) lines. Following absorption of a third photon, protons were formed by three different mechanisms and detected using velocity map imaging. (1) H(*)(n=2) was formed in coincidence with (2)P(i) halogen atoms and subsequently ionized. For HCl, photodissociation into H(*)(n=2)+Cl((2)P(12)) was dominant over the formation of Cl((2)P(32)) and was attributed to parallel excitation of the repulsive [(2) (2)Pi4llambda] superexcited (Omega=0) states. For HBr, the Br((2)P(32))Br((2)P(12)) ratio decreases with increasing excitation energy. This indicates that both the [(3) (2)Pi(12)5llambda] and the [B (2) summation operator5llambda] superexcited (Omega=0) states contribute to the formation of H(*)(n=2). (2) For selected intermediate states HCl was found to dissociate into the H(+)+Cl(-) ion pair with over 20% relative yield. A mechanism is proposed by which a bound [A (2) summation operatornlsigma] (1) summation operator(0(+)) superexcited state acts as a gateway state to dissociation into the ion pair. (3) For all intermediate states, protons were formed by dissociation of HX(+)[v(+)] following a parallel, DeltaOmega=0, excitation. The quantum yield for the dissociation process was obtained using previously reported photoionization efficiency data and was found to peak at v(+)=6-7 for HCl and v(+)=12 for HBr. This is consistent with excitation of the repulsive A(2) summation operator(12) and (2) (2)Pi states of HCl(+), and the (3) (2)Pi state of HBr(+). Rotational alignment of the Omega=0(+) intermediate states is evident from the angular distribution of the excited H(*)(n=2) photofragments. This effect has been observed previously and was used here to verify the reliability of the measured spatial anisotropy parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The proton energy spectrum from photodissociation of the hydrogen molecular ion by short intense pulses of infrared light is calculated. The time-dependent Schrödinger equation is discretized and integrated. For few-cycle pulses one can resolve vibrational structure, arising from the experimental preparation of the molecular ion. We calculate the corresponding energy spectrum and analyse the dependence on the pulse time delay, pulse length and intensity of the laser for ? ~ 790 nm. We conclude that the proton spectrum is a sensitive probe of both the vibrational populations and phases, and allows us to distinguish between adiabatic and nonadiabatic dissociation. Furthermore, the sensitivity of the proton spectrum from H2+ is a practical means of calibrating the pulse. Our results are compared with recent measurements of the proton spectrum for 65 fs pulses using a Ti:Sapphire laser (? ~ 790 nm) including molecular orientation and focal-volume averaging. Integrating over the laser focal volume, for the intensity I ~ 3 × 1015 W cm-2, we find our results are in excellent agreement with these experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of laser-accelerated protons as a particle probe for the detection of electric fields in plasmas has led in recent years to a wealth of novel information regarding the ultrafast plasma dynamics following high intensity laser-matter interactions. The high spatial quality and short duration of these beams have been essential to this purpose. We will discuss some of the most recent results obtained with this diagnostic at the Rutherford Appleton Laboratory (UK) and at LULI - Ecole Polytechnique (France), also applied to conditions of interest to conventional Inertial Confinement Fusion. In particular, the technique has been used to measure electric fields responsible for proton acceleration from solid targets irradiated with ps pulses, magnetic fields formed by ns pulse irradiation of solid targets, and electric fields associated with the ponderomotive channelling of ps laser pulses in under-dense plasmas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.