974 resultados para Protein fragment complementation assay
Resumo:
To delineate the phospholipase C (PLC; EC 3.1.4.3) beta2 sequences involved in interactions with the beta-gamma subunits of G proteins, we prepared a number of mammalian expression plasmids encoding a series of PLC beta2 segments that span the region from the beginning of the X box to the end of the Y box. We found the sequence extending from residue Glu-435 to residue Val-641 inhibited Gbeta-gamma-mediated activation of PLC beta2 in transfected COS-7 cells. This PLC beta2 sequence also inhibited ligand-induced activation of PLC in COS-7 cells cotransfected with cDNAs encoding the complement component C5a receptor and PLC beta2 but not in cells transfected with the alpha1B-adrenergic receptor, suggesting that the PLC beta2 residues (Glu-435 to Val-641) inhibit the Gbeta-gamma-mediated but not the Galpha-mediated effect. The inhibitory effect on Gbeta-gamma-mediated activation of PLC beta2 may be the result of the interaction between Gbeta-gamma and the PLC beta2 fragment. This idea was confirmed by the observation that a fusion protein comprising these residues (Glu-435 to Val-641) of PLC beta2 and glutathione S-transferase (GST) bound to Gbeta-gamma in an in vitro binding assay. The Gbeta-gamma-binding region was further narrowed down to 62 amino acids (residues Leu-580 to Val-641) by testing fusion proteins comprising various PLC beta2 sequences and GST in the in vitro binding assay.
Resumo:
Phosducin is a cytosolic protein predominantly expressed in the retina and the pineal gland that can interact with the betagamma subunits of guanine nucleotide binding proteins (G proteins) and thereby may regulate transmembrane signaling. A cDNA encoding a phosducin-like protein (PhLP) has recently been isolated from rat brain [Miles, M. F., Barhite, S., Sganga, M. & Elliott, M. (1993) Proc. Natl. Acad. Sci. USA 90, 10831-10835. Here we report the expression of PhLP in Escherichia coli and its purification. Recombinant purified PUP inhibited multiple effects of G-protein betagamma subunits. First, it inhibited the betagamma-subunit-dependent ADP-ribosylation of purified alpha(o) by pertussis toxin. Second, it inhibited the GTPase activity of purified G(o). The IC50 value of PhLP in the latter assay was 89 nM, whereas phosducin caused half-maximal inhibition at 17 nM. And finally, PhLP antagonized the enhancement of rhodopsin phosphorylation by purified betagamma subunits. The N terminus of PhLP shows no similarity to the much longer N terminus of phosducin, the region shown to be critical for phosducin-betagamma-subunit interactions. Therefore, PhLP appears to bind to G-protein betagamma subunits by an as yet unknown mode of interaction and may represent an endogenous regulator of G-protein function.
Resumo:
Polycystic kidney disease 1 (PKD1) is the major locus of the common genetic disorder autosomal dominant polycystic kidney disease. We have studied PKD1 mRNA, with an RNase protection assay, and found widespread expression in adult tissue, with high levels in brain and moderate signal in kidney. Expression of the PKD1 protein, polycystin, was assessed in kidney using monoclonal antibodies to a recombinant protein containing the C terminus of the molecule. In fetal and adult kidney, staining is restricted to epithelial cells. Expression in the developing nephron is most prominent in mature tubules, with lesser staining in Bowman's capsule and the proximal ureteric bud. In the nephrogenic zone, detectable signal was observed in comma- and S-shaped bodies as well as the distal branches of the ureteric bud. By contrast, uninduced mesenchyme and glomerular tufts showed no staining. In later fetal (>20 weeks) and adult kidney, strong staining persists in cortical tubules with moderate staining detected in the loops of Henle and collecting ducts. These results suggest that polycystin's major role is in the maintenance of renal epithelial differentiation and organization from early fetal life. Interestingly, polycystin expression, monitored at the mRNA level and by immunohistochemistry, appears higher in cystic epithelia, indicating that the disease does not result from complete loss of the protein.
Resumo:
Rap phosphatases are a recently discovered family of protein aspartate phosphatases that dephosphorylate the Spo0F--P intermediate of the phosphorelay, thus preventing sporulation of Bacillus subtilis. They are regulators induced by physiological processes that are antithetical to sporulation. The RapA phosphatase is induced by the ComP-ComA two-component signal transduction system responsible for initiating competence. RapA phosphatase activity was found to be controlled by a small protein, PhrA, encoded on the same transcript as RapA. PhrA resembles secreted proteins and the evidence suggests that it is cleaved by signal peptidase I and a 19-residue C-terminal domain is secreted from the cell. The sporulation deficiency caused by the uncontrolled RapA activity of a phrA mutant can be complemented by synthetic peptides comprising the last six or more of the C-terminal residues of PhrA. Whether the peptide controls RapA activity directly or by regulating its synthesis remains to be determined. Complementation of the phrA mutant can also be obtained in mixed cultures with a wild-type strain, suggesting the peptide may serve as a means of communication between cells. Importation of the secreted peptide required the oligopeptide transport system. The sporulation deficiency of oligopeptide transport mutants can be suppressed by mutating the rapA and rapB genes or by introduction of a spo0F mutation Y13S that renders the protein insensitive to Rap phosphatases. The data indicate that the sporulation deficiency of oligopeptide transport mutants is due to their inability to import the peptides controlling Rap phosphatases.
Resumo:
The Escherichia coli fnr gene product, FNR, is a DNA binding protein that regulates a large family of genes involved in cellular respiration and carbon metabolism during conditions of anaerobic cell growth. FNR is believed to contain a redox/O2-sensitive element for detecting the anaerobic state. To investigate this process, a fnr mutant that encodes an altered FNR protein with three amino acid substitutions in the N-terminal domain was constructed by site-directed mutagenesis. In vivo, the mutant behaved like a wild-type strain under anaerobic conditions but had a 14-fold elevated level of transcriptional activation of a reporter gene during aerobic cell growth. The altered fur gene was overexpressed in E. coli and the resultant FNR protein was purified to near homogeneity by using anaerobic chromatography procedures. An in vitro Rsa I restriction site protection assay was developed that allowed for the assessment of oxygen-dependent DNA binding of the mutant FNR protein. The FNR protein was purified as a monomer of M(r) 28,000 that contained nonheme iron at 2.05 +/- 0.34 mol of Fe per FNR monomer. In vitro DNase I protection studies were performed to establish the locations of the FNR-binding sites at the narG, narK, dmsA, and hemA promoters that are regulated by either activation or repression of their transcription. The sizes of the DNA footprints are consistent with the binding of two monomers of FNR that protect the symmetrical FNR-recognition sequence TTGAT-nnnnATCAA. Exposure of the FNR protein or protein-DNA complex to air for even short periods of time (approximately 5 min) led to the complete loss of DNA protection at a consensus FNR recognition site. A model whereby the FNR protein exists in the cell as a monomer that assembles on the DNA under anaerobic conditions to form a dimer is discussed.
Resumo:
Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene.
Resumo:
Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA).
Resumo:
Sterol-regulated transcription of the gene for rat farnesyl diphosphate (FPP) synthase (geranyl-diphosphate:isopentenyl-diphosphate geranyltranstransferase, EC 2.5.1.10) is dependent in part on the binding of the ubiquitous transcription factor NF-Y to a 6-bp element within the proximal promoter. Current studies identify a second element in this promoter that is also required for sterol-regulated transcription in vivo. Mutation of three nucleotides (CAC) within this element blocks the 8-fold induction of FPP synthase promoter-reporter genes that normally occurs when the transfected cells are incubated in medium deprived of sterols. Gel mobility-shift assays demonstrate that the transcriptionally active 68-kDa fragment of the sterol regulatory element (SRE-1)-binding protein assays (SREBP-1) binds to an oligonucleotide containing the wild-type sequence but not to an oligonucleotide in which the CAC has been mutated. DNase 1 protection pattern (footprint) analysis indicates that SREBP-1 binds to nucleotides that include the CAC. Both the in vivo and in vitro assays are affected by mutagenesis of nucleotides adjacent to the CAC. Coexpression of SREBP with a wild-type FPP synthase promoter-reporter gene in CV-1 cells results in very high levels of reporter activity that is sterol-independent. In contrast, the reporter activity remained low when the promoter contained a mutation in the CAC trinucleotide. We conclude that sterol-regulated transcription of FPP synthase is controlled in part by the interaction of SREBP with a binding site that we have termed SRE-3. Identification of this element may prove useful in the identification of other genes that are both regulated by SREBP and involved in lipid biosynthesis.
Resumo:
A capillary electrophoresis method has been developed to study DNA-protein complexes by mobility-shift assay. This method is at least 100 times more sensitive than conventional gel mobility-shift procedures. Key features of the technique include the use of a neutral coated capillary, a small amount of linear polymer in the separation medium, and use of covalently dye-labeled DNA probes that can be detected with a commercially available laser-induced fluorescence monitor. The capillary method provides quantitative data in runs requiring < 20 min, from which dissociation constants are readily determined. As a test case we studied interactions of a developmentally important sea urchin embryo transcription factor, SpP3A2. As little as 2-10 x 10(6) molecules of specific SpP3A2-oligonucleotide complex were reproducibly detected, using recombinant SpP3A2, crude nuclear extract, egg lysates, and even a single sea urchin egg lysed within the capillary column.
Resumo:
Autonomously replicating sequence (ARS) elements of the fission yeast Schizosaccharomyces pombe contain multiple imperfect copies of the consensus sequence reported by Maundrell et al. [Maundrell K., Hutchison, A. & Shall, S. (1988) EMBO J. 7, 2203-2209]. When cell free extracts of S. pombe were incubated with a dimer or tetramer of an oligonucleotide containing the ARS consensus sequence, several complexes were detected using a gel mobility-shift assay. The proteins forming these complexes also bind ars3002, which is the most active origin in the ura4 region of chromosome III of S. pombe. One protein, partly responsible for the binding activity observed with crude extracts, was purified to near homogeneity. It is a 60-kDa protein and was named ARS-binding protein 1 (Abp1). Abp1 preferentially binds to multiple sites in ARS 3002 and to the DNA polymer poly[d(A.T)]. The cloning and sequence of the gene coding for Abp1 revealed that it encodes a protein of 59.8 kDa (522 amino acids). Abp1 has significant homology (25% identity, 50% similarity) to the N-terminal region (approximately 300 amino acids) of the human and mouse centromere DNA-binding protein CENP-B. Because centromeres of S. pombe contain a high density of ARS elements, Abp1 may play a role connecting DNA replication and chromosome segregation.
Resumo:
The cellular kinase known as PKR (protein kinase RNA-activated) is induced by interferon and activated by RNA. PKR is known to have antiviral properties due to its role in translational control. Active PKR phosphorylates eukaryotic initiation factor 2 alpha and leads to inhibition of translation, including viral translation. PKR is also known to function as a tumor suppressor, presumably by limiting the rate of tumor-cell translation and growth. Recent research has shown that RNA from the 3' untranslated region (3'UTR) of human alpha-tropomyosin has tumor-suppressor properties in vivo [Rastinejad, F., Conboy, M. J., Rando, T. A. & Blau, H. M. (1993) Cell 75, 1107-1117]. Here we report that purified RNA from the 3'UTR of human alpha-tropomyosin can inhibit in vitro translation in a manner consistent with activation of PKR. Inhibition of translation by tropomyosin 3'UTR RNA was observed in a rabbit reticulocyte lysate system, which is known to contain endogenous PKR but was not seen in wheat germ lysate, which is not responsive to a known activator of PKR. A control RNA purified in the same manner as the 3'UTR RNA did not inhibit translation in either system. The inhibition of translation observed in reticulocyte lysates was prevented by the addition of adenovirus virus-associated RNA1 (VA RNAI), an inhibitor of PKR activation. Tropomyosin 3'UTR RNA was bound by immunoprecipitated PKR and activated the enzyme in an in vitro kinase assay. These data suggest that activation of PKR could be the mechanism by which tropomyosin 3'UTR RNA exerts its tumor-suppression activity in vivo.
A single-stranded DNA binding protein binds the origin of replication of the duplex kinetoplast DNA.
Resumo:
Replication of the kinetoplast DNA (kDNA) minicircle of trypanosomatids initiates at a conserved 12-nt sequence, 5'-GGGGTTGGTGTA-3', termed the universal minicircle sequence (UMS). A sequence-specific single-stranded DNA-binding protein from Crithidia fasciculata binds the heavy strand of the 12-mer UMS. Whereas this UMS-binding protein (UMSBP) does not bind a duplex UMS dodecamer, it binds the double-stranded kDNA minicircle as well as a duplex minicircle fragment containing the origin-associated UMS. Binding of the minicircle origin region by the single-stranded DNA binding protein suggested the local unwinding of the DNA double helix at this site. Modification of thymine residues at this site by KMnO4 revealed that the UMS resides within an unwound or otherwise sharply distorted DNA at the minicircle origin region. Computer analysis predicts the sequence-directed curving of the minicircle origin region. Electrophoresis of a minicircle fragment containing the origin region in polyacrylamide gels revealed a significantly lower electrophoretic mobility than expected from its length. The fragment anomalous electrophoretic mobility is displayed only in its native conformation and is dependent on temperature and gel porosity, indicating the local curving of the DNA double helix. We suggest that binding of UMSBP at the minicircle origin of replication is possible through local unwinding of the DNA double helix at the UMS site. It is hypothesized here that this local melting is initiated through the untwisting of unstacked dinucleotide sequences at the bent origin site.
Resumo:
The core proteins of large chondroitin sulfate proteoglycans contain a C-type lectin domain. The lectin domain of one of these proteoglycans, versican, was expressed as a recombinant 15-kDa protein and shown to bind to insolubilized fucose and GlcNAc. The lectin domain showed strong binding in a gel blotting assay to a glycoprotein doublet in rat brain extracts. The binding was calcium dependent and abolished by chemical deglycosylation treatment of the ligand glycoprotein. The versican-binding glycoprotein was identified as the cell adhesion protein tenascin-R, and versican and tenascin-R were both found to be localized in the granular layer of rat cerebellum. These results show that the versican lectin domain is a binding domain with a highly targeted specificity. It may allow versican to assemble complexes containing proteoglycan, an adhesion protein, and hyaluronan.
Resumo:
A recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vector-based vaccine that secretes the V3 principal neutralizing epitope of human immunodeficiency virus (HIV) could induce immune response to the epitope and prevent the viral infection. By using the Japanese consensus sequence of HIV-1, we successfully constructed chimeric protein secretion vectors by selecting an appropriate insertion site of a carrier protein and established the principal neutralizing determinant (PND)-peptide secretion system in BCG. The recombinant BCG (rBCG)-inoculated guinea pigs were initially screened by delayed-type hypersensitivity (DTH) skin reactions to the PND peptide, followed by passive transfer of the DTH by the systemic route. Further, immunization of mice with the rBCG resulted in induction of cytotoxic T lymphocytes. The guinea pig immune antisera showed elevated titers to the PND peptide and neutralized HIVMN, and administration of serum IgG from the vaccinated guinea pigs was effective in completely blocking the HIV infection in thymus/liver transplanted severe combined immunodeficiency (SCID)/hu or SCID/PBL mice. In addition, the immune serum IgG was shown to neutralize primary field isolates of HIV that match the neutralizing sequence motif by a peripheral blood mononuclear cell-based virus neutralization assay. The data support the idea that the antigen-secreting rBCG system can be used as a tool for development of HIV vaccines.
Resumo:
Growth inhibition assays indicated that the IC50 values for methotrexate (MTX) and 5-fluorodeoxyuridine (FdUrd) in HS-18, a liposarcoma cell line lacking retinoblastoma protein (pRB), and SaOS-2, an osteosarcoma cell line with a truncated and nonfunctional pRB, were 10- to 12-fold and 4- to 11-fold higher, respectively, than for the HT-1080 (fibrosarcoma) cell line, which has wild-type pRB. These Rb-/- cell lines exhibited a 2- to 4-fold increase in both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) enzyme activities as well as a 3- to 4-fold increase in mRNA levels for these enzymes compared to the HT-1080 (Rb+/+) cells. This increase in expression was not due to amplification of the DHFR and TS genes. Growth inhibition by MTX and FdUrd was increased and DHFR and TS activities and expression were correspondingly decreased in Rb transfectants of SaOS-2 cells. In contrast, there was no significant difference in growth inhibition among these cell lines for the nonantimetabolites VP-16, cisplatin, and doxorubicin. A gel mobility-shift assay showed that parental SaOS-2 cells had increased levels of free E2F compared to the Rb-reconstituted SaOS-2 cells. These results indicate that pRB defective cells may have decreased sensitivity to growth inhibition by target enzymes encoded by genes whose transcription is enhanced by E2F proteins and suggest mechanisms of interaction between cytotoxic agents and genes involved in cell cycle progression.