940 resultados para Professional field
Resumo:
Introduction Due to their high spatial resolution diodes are often used for small field relative output factor measurements. However, a field size specific correction factor [1] is required and corrects for diode detector over-response at small field sizes. A recent Monte Carlo based study has shown that it is possible to design a diode detector that produces measured relative output factors that are equivalent to those in water. This is accomplished by introducing an air gap at the upstream end of the diode [2]. The aim of this study was to physically construct this diode by placing an ‘air cap’ on the end of a commercially available diode (the PTW 60016 electron diode). The output factors subsequently measured with the new diode design were compared to current benchmark small field output factor measurements. Methods A water-tight ‘cap’ was constructed so that it could be placed over the upstream end of the diode. The cap was able to be offset from the end of the diode, thus creating an air gap. The air gap width was the same as the diode width (7 mm) and the thickness of the air gap could be varied. Output factor measurements were made using square field sizes of side length from 5 to 50 mm, using a 6 MV photon beam. The set of output factor measurements were repeated with the air gap thickness set to 0, 0.5, 1.0 and 1.5 mm. The optimal air gap thickness was found in a similar manner to that proposed by Charles et al. [2]. An IBA stereotactic field diode, corrected using Monte Carlo calculated kq,clin,kq,msr values [3] was used as the gold standard. Results The optimal air thickness required for the PTW 60016 electron diode was 1.0 mm. This was close to the Monte Carlo predicted value of 1.15 mm2. The sensitivity of the new diode design was independent of field size (kq,clin,kq,msr = 1.000 at all field sizes) to within 1 %. Discussion and conclusions The work of Charles et al. [2] has been proven experimentally. An existing commercial diode has been converted into a correction-less small field diode by the simple addition of an ‘air cap’. The method of applying a cap to create the new diode leads to the diode being dual purpose, as without the cap it is still an unmodified electron diode.
Resumo:
Introduction Given the known challenges of obtaining accurate measurements of small radiation fields, and the increasing use of small field segments in IMRT beams, this study examined the possible effects of referencing inaccurate field output factors in the planning of IMRT treatments. Methods This study used the Brainlab iPlan treatment planning system to devise IMRT treatment plans for delivery using the Brainlab m3 microMLC (Brainlab, Feldkirchen, Germany). Four pairs of sample IMRT treatments were planned using volumes, beams and prescriptions that were based on a set of test plans described in AAPM TG 119’s recommendations for the commissioning of IMRT treatment planning systems [1]: • C1, a set of three 4 cm volumes with different prescription doses, was modified to reduce the size of the PTV to 2 cm across and to include an OAR dose constraint for one of the other volumes. • C2, a prostate treatment, was planned as described by the TG 119 report [1]. • C3, a head-and-neck treatment with a PTV larger than 10 cm across, was excluded from the study. • C4, an 8 cm long C-shaped PTV surrounding a cylindrical OAR, was planned as described in the TG 119 report [1] and then replanned with the length of the PTV reduced to 4 cm. Both plans in each pair used the same beam angles, collimator angles, dose reference points, prescriptions and constraints. However, one of each pair of plans had its beam modulation optimisation and dose calculation completed with reference to existing iPlan beam data and the other had its beam modulation optimisation and dose calculation completed with reference to revised beam data. The beam data revisions consisted of increasing the field output factor for a 0.6 9 0.6 cm2 field by 17 % and increasing the field output factor for a 1.2 9 1.2 cm2 field by 3 %. Results The use of different beam data resulted in different optimisation results with different microMLC apertures and segment weightings between the two plans for each treatment, which led to large differences (up to 30 % with an average of 5 %) between reference point doses in each pair of plans. These point dose differences are more indicative of the modulation of the plans than of any clinically relevant changes to the overall PTV or OAR doses. By contrast, the maximum, minimum and mean doses to the PTVs and OARs were smaller (less than 1 %, for all beams in three out of four pairs of treatment plans) but are more clinically important. Of the four test cases, only the shortened (4 cm) version of TG 119’s C4 plan showed substantial differences between the overall doses calculated in the volumes of interest using the different sets of beam data and thereby suggested that treatment doses could be affected by changes to small field output factors. An analysis of the complexity of this pair of plans, using Crowe et al.’s TADA code [2], indicated that iPlan’s optimiser had produced IMRT segments comprised of larger numbers of small microMLC leaf separations than in the other three test cases. Conclusion: The use of altered small field output factors can result in substantially altered doses when large numbers of small leaf apertures are used to modulate the beams, even when treating relatively large volumes.
Resumo:
When radiation therapy centres are equipped with two or more linear accelerators from the same vendor, they are usually beam-matched. This work tested the sensitivity of optically stimulated luminescence dosimeters (OSLDs) across matched linear accelerators. The responses were compared with an unshielded diode detector for varying field sizes. Clinical studies are currently done with thermoluminescent dosimeters (TLD), which absorb radiation then emit some levels of light determined by the radiation absorption when heated.
Resumo:
The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab lMLC attachment for square field sizes down to 6 mm 9 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap...
Resumo:
Objective Recently, Taylor et al. reported that use of the BrainLAB m3 microMLC, for stereotactic radiosurgery, results in a decreased out-of-field dose in the direction of leaf-motion compared to the outof- field dose measured in the direction orthogonal to leaf-motion [1]. It was recommended that, where possible, patients should be treated with their superior–inferior axes aligned with the microMLCs leafmotion direction, to minimise out-of-field doses [1]. This study aimed, therefore, to examine the causes of this asymmetry in outof- field dose and, in particular, to establish that a similar recommendation need not be made for radiotherapy treatments delivered by linear accelerators without external micro-collimation systems. Methods Monte Carlo simulations were used to study out-of-field dose from different linear accelerators (the Varian Clinacs 21iX and 600C and the Elekta Precise) with and without internal MLCs and external microMLCs [2]. Results Simulation results for the Varian Clinac 600C linear accelerator with BrainLAB m3 microMLC confirm Taylor et als [1] published experimental data. The out-of-field dose in the leaf motion direction is deposited by lower energy (more obliquely scattered) photons than the out-of-field dose in the orthogonal direction. Linear accelerators without microMLCs produce no asymmetry in out-offield dose. Conclusions The asymmetry in out-of-field dose previously measured by Taylor et al. [1] results from the shielding characteristics of the BrainLAB m3 microMLC device and is not produced by the linear accelerator to which it is attached.
Resumo:
Purpose The purpose of this review is to address important methodological issues related to conducting accelerometer-based assessments of physical activity in free-living individuals. Methods We review the extant scientific literature for empirical information related to the following issues: product selection, number of accelerometers needed, placement of accelerometers, epoch length, and days of monitoring required to estimate habitual physical activity. We also discuss the various options related to distributing and collecting monitors and strategies to enhance compliance with the monitoring protocol. Results No definitive evidence exists currently to indicate that one make and model of accelerometer is more valid and reliable than another. Selection of accelerometer therefore remains primarily an issue of practicality, technical support, and comparability with other studies. Studies employing multiple accelerometers to estimate energy expenditure report only marginal improvements in explanatory power. Accelerometers are best placed on hip or the lower back. Although the issue of epoch length has not been studied in adults, the use of count cut points based on 1-min time intervals maybe inappropriate in children and may result in underestimation of physical activity. Among adults, 3–5 d of monitoring is required to reliably estimate habitual physical activity. Among children and adolescents, the number of monitoring days required ranges from 4 to 9 d, making it difficult to draw a definitive conclusion for this population. Face-to-face distribution and collection of accelerometers is probably the best option in field-based research, but delivery and return by express carrier or registered mail is a viable option. Conclusion Accelerometer-based activity assessments requires careful planning and the use of appropriate strategies to increase compliance.
Resumo:
Research shows that approximately half of creative practitioners operate as embedded creatives by securing gainful employment within organisations located in the field beyond their core discipline. This foregrounds the significance of having the skills necessary to successfully cross the disciplinary boundaries in order to negotiate a professional role. The multiple implications of such reframing for emerging creative practitioners who navigate uncertain professional boundaries include developing a skill of identifying and successfully targeting the shifting professional and industry coordinates while remaining responsive to changes. A further implication involves creative practitioners engaging in a continuous cycle of re-negotiation of their professional identity making the management of multiple professional selves - along with creating and recreating a meaningful frame of references such as the language around their emerging practice - a necessary skill. This chapter presents a case study of a set of Work Integrated Learning subjects designed to develop in creative industries practitioners the skills to manage their emerging professional identities in response to the shifts in the professional world.
Resumo:
This study explores the professional development strategies of digital content professionals in Australian micro businesses. This thesis presents the argument that as these professionals are working in cutting edge creative fields where digital technology drives ongoing change, formal education experiences may be less important than for other professionals, and that specific types of online and face-to-face socially mediated informal learning strategies may be critical to currency. This thesis documents the findings of a broad survey of industry professionals' learning needs and development strategies, in conjunction with rich data from in-depth interviews and social network analyses.
Resumo:
Research Background: The proliferation of technologically-based interventions and mHealth in particular have led to a need for innovative, relevant and engaging ways of presenting health messages to young people using technology. ‘Ray’s Night Out’ is a mobile health application co-designed with young people by an interdisciplinary team of researchers at Queensland University of Technology. Research Questions: The design, research, development and evaluation of ‘Ray’s Night Out’ addressed a number of research questions from across the fields of Psychology and Interactive and Visual Design. The specific design research questions addressed were: How can a mobile intervention be best designed to promote young people’s safety and wellbeing and minimise harm when consuming alcohol on a typical night out? Specifically, how can principles of interactive and visual design be effectively applied to develop innovative digital health communication solutions that empower young people as active participants in improving their health and wellbeing? Research Contribution: Innovation The mobile app, as a digital artifact, represents a new way of engaging young people in the issue of alcohol consumption and the pacing and self-care behaviours through unique interaction, visual and interface designs which resulted from the participant-led and iterative design research process. The design of the specific interactive and visual features of the app informed by participatory design data and by health research present a novel approach to preventing young people in crossing the ‘stupid line’ on a typical night out. Research Significance: The significance of the design research component within the larger interdisciplinary practices that have informed ‘Ray’s Night Out’ (e.g. field of psychology, reported through journal articles and other related outcomes), is the unique visual and interactive presentation of participant data and health concepts within the app interface and interaction design which improves and increases young people’s engagement with the health messages it contains. The global quality standard is further demonstrated by the launch on Apple iTunes: https://itunes.apple.com/us/app/rays-night-out/id978589497?mt=8 This demonstrates the application meets the high professional requirements for global release and international standards set by Apple AppStore.
Resumo:
Research Background Young people’s avid use of mobile technologies in daily life has led to an increase in the design and research on mHealth (mobile health) interventions targeting young people. ‘Music eScape’ is a mobile based mood regulation app that uses an innovative approach to promoting young people’s wellbeing using music. Research Question The design, research, development and evaluation of ‘Music eScape’ addressed a number of research questions from across the fields of Psychology and Interactive and Visual Design. The specific design research question addressed was: How can interaction and visual design be utilized to promote and enable young people to effectively regulate their mood using music and how can the new design further promote their experience of empowerment, control and agency over actively directing their mood journey? Research Contribution Innovation and New Knowledge Through its unique visual interface design and interactivity, the application presents a novel approach to promoting young people’s wellbeing using music and a specific function that allows users to ‘draw’ their mood journey in order to generate a playlist. The mobile app is the first to contain a function that enables users to plan their mood journey and exercise a sense of agency, intentional choice and control over the mood shift and by extension, their wellbeing. The feature ‘drawing’ interface was designed by Oksana Zelenko using participatory design research and Russell’s circumplex model of affect (1980) to inform the key visual design concept and underpinning interaction design. Research Significance The significance of the design research component within the larger interdisciplinary practices that have informed ‘Music eScape’ (e.g. field of psychology, reported through journal articles and other related outcomes), is the unique visual and interactive presentation of participant data and music therapy research within the app interface and interaction design which improves and increases young people’s engagement with the health messages it contains. The industry quality standard is further demonstrated by the launch on Apple iTunes. This demonstrates the application meets the high professional requirements for national release and meets international standards. The app also creates a new benchmark for the quality of health apps on the market as it marks the industry release of a trialled evidence-based mHealth intervention co-designed with young people.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55-70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and I laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R=.66), lower body strength (sit to stand, R=.80) and functional capacity (Canadian Step Test, R=.92), but not for leg power (single timed chair rise, R=.28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r=.68, p <.05), and for the step test (cf PWC140, r = -.60, p <.001), but not for the lift and reach (cf 1RM bench press, r=.43, p >.05), balance (r=-.13, -.18, .23) and rate of force development tests (r=-.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
One method of addressing the shortage of science and mathematics teachers is to train scientists and other science-related professionals to become teachers. Advocates argue that as discipline experts these career changers can relate the subject matter knowledge to various contexts and applications in teaching. In this paper, through interviews and classroom observations with a former scientist and her students, we examine how one career changer used her expertise in microbiology to teach microscopy. These data provided the basis for a description of the teacher’s instruction which was then analysed for components of domain knowledge for teaching. Consistent with the literature, the findings revealed that this career changer needed to develop her pedagogical knowledge. However, an interesting finding was that the teacher’s subject matter as a science teacher differed substantively from her knowledge as a scientist. This finding challenges the assumption that subject matter is readily transferable across professions and provides insight into how to better prepare and support career changers to transition from scientist to science teacher.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
Tissue engineering is a multidisciplinary field with the potential to replace tissues lost as a result of trauma, cancer surgery, or organ dysfunction. The successful production, integration, and maintenance of any tissue-engineered product are a result of numerous molecular interactions inside and outside the cell. We consider the essential elements for successful tissue engineering to be a matrix scaffold, space, cells, and vasculature, each of which has a significant and distinct molecular underpinning (Fig. 1). Our approach capitalizes on these elements. Originally developed in the rat, our chamber model (Fig. 2) involves the placement of an arteriovenous loop (the vascular supply) in a polycarbonate chamber (protected space) with the addition of cells and an extracellular matrix such as Matrigel or endogenous fibrin (34, 153, 246, 247). This model has also been extended to the rabbit and pig (J. Dolderer, M. Findlay, W. Morrison, manuscript in preparation), and has been modified for the mouse to grow adipose tissue and islet cells (33, 114, 122) (Fig. 3)...