936 resultados para Probabilistic Optimal Power Flow
Resumo:
A Internet está inserida no cotidiano do indivíduo, e torna-se cada vez mais acessível por meio de diferentes tipos de dispositivos. Com isto, diversos estudos foram realizados com o intuito de avaliar os reflexos do seu uso excessivo na vida pessoal, acadêmica e profissional. Esta dissertação buscou identificar se a perda de concentração e o isolamento social são alguns dos reflexos individuais que o uso pessoal e excessivo de aplicativos de comunicação instantânea podem resultar no ambiente de trabalho. Entre as variáveis selecionadas para avaliar os aspectos do uso excessivo de comunicadores instantâneos tem-se a distração digital, o controle reduzido de impulso, o conforto social e a solidão. Através de uma abordagem de investigação quantitativa, utilizaram-se escalas aplicadas a uma amostra de 283 pessoas. Os dados foram analisados por meio de técnicas estatísticas multivariadas como a Análise Fatorial Exploratória e para auferir a relação entre as variáveis, a Regressão Linear Múltipla. Os resultados deste estudo confirmam que o uso excessivo de comunicadores instantâneos está positivamente relacionado com a perda de concentração, e a variável distração digital exerce uma influência maior do que o controle reduzido de impulso. De acordo com os resultados, não se podem afirmar que a solidão e o conforto social exercem relações com aumento do isolamento social, devido à ausência do relacionamento entre os construtos.
Resumo:
This project is funded by RTE, Paris, France
Resumo:
Experimental intramolecular vibrational dephasing transients for several large organic molecules are reanalyzed. Fits to the experimental data, as well as full numerical quantum calculations with a factorized potential surface for all active degrees of freedom of fluorene indicate that power law decays, not exponentials, occur at intermediate times. The results support a proposal that power law decays describe vibrational dephasing dynamics in large molecules at intermediate times because of the local nature of energy flow.
Resumo:
The small viscosity asymptotics of the inertial range of local structure and of the wall region in wallbounded turbulent shear flow are compared. The comparison leads to a sharpening of the dichotomy between Reynolds number dependent scaling (power-type) laws and the universal Reynolds number independent logarithmic law in wall turbulence. It further leads to a quantitative prediction of an essential difference between them, which is confirmed by the results of a recent experimental investigation. These results lend support to recent work on the zero viscosity limit of the inertial range in turbulence.
Resumo:
A causal role has been inferred for ERBB2 overexpression in the etiology of breast cancer and other epithelial malignancies. The development of therapeutics that inhibit this tyrosine kinase cell surface receptor remains a high priority. This report describes the specific downregulation of ERBB2 protein and mRNA in the breast cancer cell line SK-BR-3 by using antisense DNA phosphorothioates. An approach was developed to examine antisense effects which allows simultaneous measurements of antisense dose and gene specific regulation on a per cell basis. A fluorescein isothiocyanate end-labeled tracer oligonucleotide was codelivered with antisense DNA followed by immunofluorescent staining for ERBB2 protein expression. Two-color flow cytometry measured the amount of both intracellular oligonucleotide and ERBB2 protein. In addition, populations of cells that received various doses of nucleic acids were physically separated and studied. In any given transfection, a 100-fold variation in oligonucleotide dosage was found. ERBB2 protein expression was reduced greater than 50%, but only in cells within a relatively narrow uptake range. Steady-state ERBB2 mRNA levels were selectively diminished, indicating a specific antisense effect. Cells receiving the optimal antisense dose were sorted and analyzed for cell cycle changes. After 2 days of ERBB2 suppression, breast cancer cells showed an accumulation in the G1 phase of the cell cycle.
Resumo:
Electromagnetic coupling phenomena between overhead power transmission lines and other nearby structures are inevitable, especially in densely populated areas. The undesired effects resulting from this proximity are manifold and range from the establishment of hazardous potentials to the outbreak of alternate current corrosion phenomena. The study of this class of problems is necessary for ensuring security in the vicinities of the interaction zone and also to preserve the integrity of the equipment and of the devices there present. However, the complete modeling of this type of application requires the three- -dimensional representation of the region of interest and needs specific numerical methods for field computation. In this work, the modeling of problems arising from the flow of electrical currents in the ground (the so-called conductive coupling) will be addressed with the finite element method. Those resulting from the time variation of the electromagnetic fields (the so-called inductive coupling) will be considered as well, and they will be treated with the generalized PEEC (Partial Element Equivalent Circuit) method. More specifically, a special boundary condition on the electric potential is proposed for truncating the computational domain in the finite element analysis of conductive coupling problems, and a complete PEEC formulation for modeling inductive coupling problems is presented. Test configurations of increasing complexities are considered for validating the foregoing approaches. These works aim to provide a contribution to the modeling of this class of problems, which tend to become common with the expansion of power grids.
Resumo:
Póster presentado en Escape 22, European Symposium on Computer Aided Process Engineering, University College London, UK, 17-20 June 2012.
Resumo:
Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.
Resumo:
The sport of rowing has become more popular in the past decade. While it is a relatively low impact sport, injuries can occur, specifically to the ribs (Karlson K. A., 1998) and more often in female athletes (Hickey, Fricker, & McDonald , 1997). It has been proposed that as the athlete rows, applying a cyclical load to the body, the mid trapezius fatigues and is unable to resist the force produced during the drive phase (Warden S. J., Gutschlag, Wajswelner, & Crossley, 2002). Once this happens, the scapulae are then pulled anterio-laterally which increases the compression force on the ribs, increasing the risk of injury. The rowing motion of 12 female varsity and club rowers was tracked as they completed a fatiguing rowing test on a rowing ergometer. Results showed that the curvature of thoracic spine changed throughout the rowing cycle but did not change with increasing power level. The transverse shoulder angle decreased (the upper back was less straight) as power level increased (R2=-0.69±19), suggesting that the scapula moved anterio-laterally. This may be that as it tired, the mid-trapezius was unable to hold the scapulae in position. The decreasing transverse shoulder angle when the power level is increased indirectly supports the fatiguing of the retractor muscles as a mechanism of injury. It would be valuable to understand the limitations of each athlete and to be able to prescribe the optimal training zone to reduce the risk of injury.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Using the work and ideas of French theorist Michel Foucault the writer examines s 3LA of the Crimes Act, which provides law enforcement officers with power to compel a person to reveal their private encryption keys and other personal information, and concludes that such a section creates fear, redirects flow of power between law enforcement agencies and citizens, and creates resistance.
Resumo:
Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.
Resumo:
Translational pausing may occur due to a number of mechanisms, including the presence of non-optimal codons, and it is thought to play a role in the folding of specific polypeptide domains during translation and in the facilitation of signal peptide recognition during see-dependent protein targeting. In this whole genome analysis of Escherichia coli we have found that non-optimal codons in the signal peptide-encoding sequences of secretory genes are overrepresented relative to the mature portions of these genes; this is in addition to their overrepresentation in the 5'-regions of genes encoding non-secretory proteins. We also find increased non-optimal codon usage at the 3' ends of most E. coli genes, in both non-secretory and secretory sequences. Whereas presumptive translational pausing at the 5' and 3' ends of E. coli messenger RNAs may clearly have a general role in translation, we suggest that it also has a specific role in sec-dependent protein export, possibly in facilitating signal peptide recognition. This finding may have important implications for our understanding of how the majority of non-cytoplasmic proteins are targeted, a process that is essential to all biological cells. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Fine-scale spatial genetic structure (SGS) in natural tree populations is largely a result of restricted pollen and seed dispersal. Understanding the link between limitations to dispersal in gene vectors and SGS is of key interest to biologists and the availability of highly variable molecular markers has facilitated fine-scale analysis of populations. However, estimation of SGS may depend strongly on the type of genetic marker and sampling strategy (of both loci and individuals). To explore sampling limits, we created a model population with simulated distributions of dominant and codominant alleles, resulting from natural regeneration with restricted gene flow. SGS estimates from subsamples (simulating collection and analysis with amplified fragment length polymorphism (AFLP) and microsatellite markers) were correlated with the 'real' estimate (from the full model population). For both marker types, sampling ranges were evident, with lower limits below which estimation was poorly correlated and upper limits above which sampling became inefficient. Lower limits (correlation of 0.9) were 100 individuals, 10 loci for microsatellites and 150 individuals, 100 loci for AFLPs. Upper limits were 200 individuals, five loci for microsatellites and 200 individuals, 100 loci for AFLPs. The limits indicated by simulation were compared with data sets from real species. Instances where sampling effort had been either insufficient or inefficient were identified. The model results should form practical boundaries for studies aiming to detect SGS. However, greater sample sizes will be required in cases where SGS is weaker than for our simulated population, for example, in species with effective pollen/seed dispersal mechanisms.