881 resultados para Prescription de médicament
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The use of medicines during pregnancy deserves special attention from dentists due to the potential risks to fetal development. The prescription of antimicrobial drugs during this period must be based not only on the etiology of the disease but also on the drug's effect on the embryo, which may be toxic, possibly leading to irreversible lesions. Interest in studies of the teratogenic effects of drugs increased in response to reports of the high incidence of phocomelia in patients treated with thalidomide. Although teratogenicity has long been known, pregnant women today are still exposed to this risk. The effects of drugs depend on the level of susceptibility of the fetus and on the period of exposure during pregnancy. In this context, and considering the paucity of studies on this subject in dentistry, the aim of this review was to offer an up-to-date compilation of data on the antimicrobial drugs most frequently used during pregnancy and the effects of their use.
Resumo:
A new expression for the spin connection of teleparallel gravity is proposed, given by minus the contorsion tensor plus a zero connection. The corresponding minimal coupling is covariant under local Lorentz transformation, and equivalent to the minimal coupling prescription of general relativity. With this coupling prescription, therefore, teleparallel gravity turns out to be fully equivalent to general relativity, even in the presence of spinor fields.
Resumo:
According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Though equivalent, they act differently: curvature yields a geometric description, in which the concept of gravitational force is absent whereas torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent to the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which is just an alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is discussed.
Resumo:
A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.
Resumo:
In this article, the multiloop amplitude prescription using the super-Poincare invariant pure spinor formalism for the superstring is reviewed. Unlike the RNS prescription, there is no sum over spin structures and surface terms coming from the boundary of moduli space can be ignored. Massless N-point multiloop amplitudes vanish for N < 4, which implies (with two mild assumptions) the perturbative finiteness of superstring theory. Also, R-4 terms receive no multiloop contributions in agreement with the Type IIB S-duality conjecture of Green and Gutperle. (c) 2005 Published by Elsevier SAS on behalf of Academie des sciences.
Resumo:
The only calculations performed beyond one-loop level in the light-cone gauge make use of the Mandelstam-Leibbrandt (ML) prescription in order to circumvent the notorious gauge dependent poles. Recently we have shown that in the context of negative dimensional integration method (NDIM) such prescription can be altogether abandoned, at least in one-loop order calculations. We extend our approach, now studying two-loop integrals pertaining to two-point functions. While previous works on the subject present only divergent parts for the integrals, we show that our prescriptionless method gives the same results for them, besides finite parts for arbitrary exponents of propagators. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
An open superstring field theory action has been proposed which does not suffer from contact term divergences. In this paper, we compute the on-shell four-point tree amplitude fi om this action using the Giddings map. After including contributions from the quartic term in the action, the resulting amplitude agrees with the first-quantized prescription. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Inspired in recent works of Biedenham [1, 2] on the realization of the q-algebra su(q)(2), We show in this note that the condition [2j + 1](q) = N-q(j) = integer, implies the discretization of the deformation parameter alpha, where q = e(alpha). This discretization replaces the continuum associated to ct by an infinite sequence alpha(1), alpha(2), alpha(3),..., obtained for the values of j, which label the irreps of su(q)(2). The algebraic properties of N-q(j) are discussed in some detail, including its role as a trace, which conducts to the Clebsch-Gordan series for the direct product of irreps. The consequences of this process of discretization are discussed and its possible applications are pointed out. Although not a necessary one, the present prescription is valuable due to its algebraic simplicity especially in the regime of appreciable values of alpha.
Resumo:
We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.
Resumo:
By using a nonholonomous-frame formulation of the general covariance principle, seen as an active version of the strong equivalence principle, an analysis of the gravitational coupling prescription in the presence of curvature and torsion is made. The Coupling prescription implied by this principle is found to be always equivalent to that of general relativity, a result that reinforces the completeness of this theory, as well as the teleparallel point of view according to which torsion does not represent additional degrees of freedom for gravity, but simply an alternative way of representing the gravitational field.
Resumo:
An uncomplicated and easy handling prescription that converts the task of checking the unitarity of massive, topologically massive, models into a straightforward algebraic exercise, is developed. The algorithm is used to test the unitarity of both topologically massive higher-derivative electromagnetism (TMHDE) and topologically massive higher-derivative gravity (TMHDG). The novel and amazing features of these effective field models are also discussed.
Resumo:
We discuss the pure gauge Schwinger-Dyson equation for the gluon propagator in the Landau gauge within an approximation proposed by Mandelstam many years ago. We show that a dynamical gluon mass arises as a solution. This solution is obtained numerically in the full range of momenta that we have considered without the introduction of any ansatz or asymptotic expression in the infrared region. The vertex function that we use follows a prescription formulated by Cornwall to determine the existence of a dynamical gluon mass in the light cone gauge. The renormalization procedure differs from the one proposed by Mandelstam and allows for the possibility of a dynamical gluon mass. Some of the properties of this solution, such as its dependence on A(QCD) and its perturbative scaling behavior are also discussed.
Resumo:
According to general relativity, the interaction of a matter field with gravitation requires the simultaneous introduction of a tetrad field, which is a field related to translations, and a spin connection, which is a field assuming values in the Lie algebra of the Lorentz group. These two fields, however, are not independent. By analyzing the constraint between them, it is concluded that the relevant local symmetry group behind general relativity is provided by the Lorentz group. Furthermore, it is shown that the minimal coupling prescription obtained from the Lorentz covariant derivative coincides exactly with the usual coupling prescription of general relativity. Instead of the tetrad, therefore, the spin connection is to be considered as the fundamental field representing gravitation.