905 resultados para Premature infants.
Resumo:
Background: Therapeutic hypothermia (TH) following perinatal asphyxial encephalopathy in term infants improves mortality and neurodevelopmental outcome. In Europe, most neonatal units perform active cooling whereas in Switzerland passive cooling is predominantly used. Aims: (i) To determine how many infants were cooled within the last 5 years in Switzerland, (ii) to assess the cooling methods, (iii) to evaluate the variation of temperature of different cooling methods, and (iv) to evaluate the use of neuromonitoring. Study design: Retrospective cohort study. Patients: Notes of all cooled term infants between March 2005 and December 2010 in 9 perinatal and two paediatric intensive care centres were retrospectively reviewed. Active cooling was compared to passive cooling alone and to passive cooling in combination with gel packs. Results: 150 infants were cooled. Twenty-seven (18.2%) were cooled actively, 34 (23%) passively and 87 (58.8%) passively in combination with gel packs. Variation of temperature was significantly different between the three methods. Passive cooling had a significant higher variation of temperature (SD of 0.89) than both passive cooling in combination with gel packs (SD of 0.79) and active cooling (SD of 0.76). aEEG before TH was obtained in 35.8% of the infants and 86.5% had full EEG. One cUS was performed in 95.3% and MRI in 62.2% of the infants. Conclusion: Target temperature can be achieved with all three cooling methods. Passive cooling has the highest variation of temperature. Neuromonitoring should be improved in Swiss neonatal and paediatric intensive care units. Our results stress the importance of national registries.
Resumo:
RATIONALE: ABCA3 mutations are known to cause fatal surfactant deficiency. OBJECTIVE: We studied ABCA3 protein expression in full-term newborns with unexplained respiratory distress syndrome (URDS) as well as the relevance of ABCA3 mutations for surfactant homeostasis. METHODS: Lung tissue of infants with URDS was analyzed for the expression of ABCA3 in type II pneumocytes. Coding exons of the ABCA3 gene were sequenced. Surfactant protein expression was studied by immunohistochemistry, immunoelectron microscopy, and Western blotting. RESULTS: ABCA3 protein expression was found to be greatly reduced or absent in 10 of 14 infants with URDS. Direct sequencing revealed distinct ABCA3 mutations clustering within vulnerable domains of the ABCA3 protein. A strong expression of precursors of surfactant protein B (pro-SP-B) but only low levels and aggregates of mature surfactant protein B (SP-B) within electron-dense bodies in type II pneumocytes were found. Within the matrix of electron-dense bodies, we detected precursors of SP-C (pro-SP-C) and cathepsin D. SP-A was localized in small intracellular vesicles, but not in electron-dense bodies. SP-A and pro-SP-B were shown to accumulate in the intraalveolar space, whereas mature SP-B and SP-C were reduced or absent, respectively. CONCLUSION: Our data provide evidence that ABCA3 mutations are associated not only with a deficiency of ABCA3 but also with an abnormal processing and routing of SP-B and SP-C, leading to severe alterations of surfactant homeostasis and respiratory distress syndrome. To identify infants with hereditary ABCA3 deficiency, we suggest a combined diagnostic approach including immunohistochemical, ultrastructural, and mutation analysis.
Resumo:
AIM: First to assess coagulation changes after surgery in children below 6 months of age. Second to detect differences attributable to the extent of surgery and postoperative infection. MATERIALS AND METHODS: Blood counts, haemoglobin concentration (Hb), haematocrit (Ht), prothrombine time (PT), activated partial thromboplastine time (aPTT) and thrombelastography (TEG) were studied pre- and 2+/-1/2 d postoperatively. Patients were divided in 3 groups. I: minor surgery without access to the abdomen or thorax (n=51); II: abdominal or thoracic interventions (n=24); III: abdominal surgery with postoperative sepsis (n=11). RESULTS: Preoperative values of Hb, Ht and INR were related to the age of the infant. Postoperatively clot strength and formation rate increased in gr. I (p<0.05). In gr. II, clot formation was initiated earlier (p<0.05) even though PT decreased (p<0.05). In group III, patients postoperatively developed a tendency for hypocoagulability in all TEG-parameters, but not in plasmatic coagulation. Postoperative TEG measurements were significantly inferior in gr. III when compared to gr. I and II. CONCLUSION: Our findings suggest activation of whole blood coagulation in the uncomplicated postoperative period despite of a decrease in plasmatic coagulation. In sepsis, only thrombelastography, but not plasmatic coagulation was affected.
Resumo:
Traditionally, non-invasive monitoring of tidal volume in infants has been performed using impedance plethysmography analyzed using a one or two compartment model. We developed a new laser system for use in infants, which measures antero-posterior movement of the chest wall during quiet sleep. In 24 unsedated or sedated infants (11 healthy, 13 with respiratory disease), we examined whether the analysis of thoracoabdominal movement based on a three compartment model could more accurately estimate tidal volume in comparison to V(T) measured at the mouth. Using five laser signals, chest wall movements were measured at the right and left, upper and lower ribcage and the abdomen. Within the tidal volume range from 4.6 to 135.7 ml, a three compartment model showed good short term repeatability and the best agreement with tidal volume measured at mouth (r(2) = 0.86) compared to that of a single compartment model (r(2) = 0.62, P < 0.0001) and a two compartment model (r(2) = 0.82, P < 0.01), particularly in the presence of respiratory disease. Three compartment modeling of a 5 laser thoracoabdominal monitoring permits more accurate estimates of tidal volume in infants and potentially of regional differences of chest wall displacement in future studies.
Resumo:
High-frequency respiratory impedance data measured noninvasively by the high-speed interrupter technique (HIT), particularly the first antiresonance frequency (f(ar,1)), is related to airway wall mechanics. The aim of this study was to evaluate the feasibility and repeatability of HIT in unsedated pre-term infants, and to compare values of f(ar,1) from 18 pre-term (post-conceptional age 32-37 weeks, weight 1,730-2,910 g) and 18 full-term infants (42-47 weeks, 3,920-5,340 g). Among the pre-term infants, there was good short-term repeatability of f(ar,1) within a single sleep epoch (mean (sd) coefficient of variance: 8 (1.7)%), but 95% limits of agreement for repeated measures of f(ar,1) after 3-8 h were relatively wide (-41 Hz; 37 Hz). f(ar,1) was significantly lower in pre-term infants (199 versus 257 Hz), indicating that wave propagation characteristics in pre-term airways are different from those of full-term infants. The present authors suggest that this is consistent with developmental differences in airway wall structure and compliance, including the influence of the surrounding tissue. Since flow limitation is determined by wave propagation velocity and airway cross-sectional area, it was hypothesised that the physical ability of the airways to carry large flows is fundamentally different in pre-term than in full-term infants.
Resumo:
BACKGROUND: A single high loading dose of 25 mg/kg caffeine has been shown to be effective for the prevention of apnoea, but may result in considerable reductions in blood flow velocity (BFV) in cerebral and intestinal arteries. OBJECTIVE: To assess the effects of two loading doses of 12.5 mg/kg caffeine given four hours apart on BFV in cerebral and intestinal arteries, left ventricular output (LVO), and plasma caffeine concentrations in preterm infants. DESIGN: Sixteen preterm neonates of <34 weeks gestation were investigated one hour after the first oral dose and one, two, and 20 hours after the second dose by Doppler sonography. RESULTS: The mean (SD) plasma caffeine concentrations were 31 (7) and 29 (7) mg/l at two and 20 hours respectively after the second dose. One hour after the first dose, none of the circulatory variables had changed significantly. One hour after the second caffeine dose, mean BFV in the internal carotid artery and anterior cerebral artery showed significant reductions of 17% and 19% (p = 0.01 and p = 0.003 respectively). BFV in the coeliac artery and superior mesenteric artery, LVO, PCO2, and respiratory rate had not changed significantly. Total vascular resistance, calculated as the ratio of mean blood pressure to LVO, had increased significantly one and two hours after the second dose (p = 0.049 and p = 0.023 respectively). CONCLUSION: A divided high loading dose of 25 mg/kg caffeine given four hours apart had decreased BFV in cerebral arteries after the second dose, whereas BFV in intestinal arteries and LVO were not affected.
Resumo:
This paper is the fourth in a series of reviews that will summarize available data and critically discuss the potential role of lung-function testing in infants with acute neonatal respiratory disorders and chronic lung disease of infancy. The current paper addresses information derived from tidal breathing measurements within the framework outlined in the introductory paper of this series, with particular reference to how these measurements inform on control of breathing. Infants with acute and chronic respiratory illness demonstrate differences in tidal breathing and its control that are of clinical consequence and can be measured objectively. The increased incidence of significant apnea in preterm infants and infants with chronic lung disease, together with the reportedly increased risk of sudden unexplained death within the latter group, suggests that control of breathing is affected by both maturation and disease. Clinical observations are supported by formal comparison of tidal breathing parameters and control of breathing indices in the research setting.
Resumo:
BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.
Resumo:
BACKGROUND: Estimation of respiratory deadspace is often based on the CO2 expirogram, however presence of the CO2 sensor increases equipment deadspace, which in turn influences breathing pattern and calculation of lung volume. In addition, it is necessary to correct for the delay between the sensor and flow signals. We propose a new method for estimation of effective deadspace using the molar mass (MM) signal from an ultrasonic flowmeter device, which does not require delay correction. We hypothesize that this estimation is correlated with that calculated from the CO2 signal using the Fowler method. METHODS: Breath-by-breath CO2, MM and flow measurements were made in a group of 77 term-born healthy infants. Fowler deadspace (Vd,Fowler) was calculated after correcting for the flow-dependent delay in the CO2 signal. Deadspace estimated from the MM signal (Vd,MM) was defined as the volume passing through the flowhead between start of expiration and the 10% rise point in MM. RESULTS: Correlation (r = 0.456, P < 0.0001) was found between Vd,MM and Vd,Fowler averaged over all measurements, with a mean difference of -1.4% (95% CI -4.1 to 1.3%). Vd,MM ranged from 6.6 to 11.4 ml between subjects, while Vd,Fowler ranged from 5.9 to 12.0 ml. Mean intra-measurement CV over 5-10 breaths was 7.8 +/- 5.6% for Vd,MM and 7.8 +/- 3.7% for Vd,Fowler. Mean intra-subject CV was 6.0 +/- 4.5% for Vd,MM and 8.3 +/- 5.9% for Vd,Fowler. Correcting for the CO2 signal delay resulted in a 12% difference (P = 0.022) in Vd,Fowler. Vd,MM could be obtained more frequently than Vd,Fowler in infants with CLD, with a high variability. CONCLUSIONS: Use of the MM signal provides a feasible estimate of Fowler deadspace without introducing additional equipment deadspace. The simple calculation without need for delay correction makes individual adjustment for deadspace in FRC measurements possible. This is especially important given the relative large range of deadspace seen in this homogeneous group of infants.
Resumo:
Human bocavirus (HBoV) is a novel agent associated with respiratory symptoms in adults and children. We studied prospectively the first acute respiratory infection in a birth cohort of healthy neonates in Switzerland. HBoV was identified in 5 (4.5%) of 112 infants as young as 3 months of age. In 4 of the 5 infants, HBoV was associated with other respiratory viruses. We conclude that HBoV circulates in the community and is acquired early in life.
Resumo:
BACKGROUND AND PURPOSE: For patients having suffered ischemic stroke, the current diagnostic strategies often fail to detect atrial fibrillation as a potential cause of embolic events. The aim of the study was to identify paroxysmal atrial fibrillation in stroke patients. We hypothesized that patients with frequent atrial premature beats (APBs) recorded in 24-hour ECG will show more often atrial fibrillation when followed by repeated long-term ECG recordings than patients without or infrequent APBs. METHODS: 127 patients with acute ischemic stroke and without known AF were enrolled in a prospective study to detect paroxysmal AF. Patients were stratified according to the number of APBs recorded in a 24-hour ECG (> or =70 APBs versus <70 APBs). Subsequently, they all underwent serial 7-day event-recorder monitoring at 0, 3, and 6 months. RESULTS: Serial extended ECG monitoring identified AF in 26% of patients with frequent APBs but only in 6.5% when APBs were infrequent (P=0.0021). A multivariate analysis showed that the presence of frequent APBs in the initial 24-hour ECG was the only independent predictor of paroxysmal AF during follow-up (odds ratio 6.6, 95% confidence intervals 1.6 to 28.2, P=0.01). CONCLUSIONS: In patients with acute ischemic stroke, frequent APBs (> or = 70/24 hours) are a marker for individuals who are at greater risk to develop or have paroxysmal AF. For such patients, we propose a diagnostic workup with repeated prolonged ECG monitoring to diagnose paroxysmal AF.
Nanoduct(R) sweat testing for rapid diagnosis in newborns, infants and children with cystic fibrosis
Resumo:
Determination of chloride concentration in sweat is the current diagnostic gold standard for Cystic Fibrosis (CF). Nanoduct(R) is a new analyzing system measuring conductivity which requires only 3 microliters of sweat and gives results within 30 minutes. The aim of the study was to evaluate the applicability of this system in a clinical setting of three children's hospitals and borderline results were compared with sweat chloride concentration. Over 3 years, 1,041 subjects were tested and in 946 diagnostic results were obtained. In 95 children, Nanoduct(R) failed (9.1% failure rate), mainly due to failures in preterm babies and newborns. Assuming 59 mmol/L as an upper limit of normal conductivity, all our 46 CF patients were correctly diagnosed (sensitivity 100%, 95% CI: 93.1-100; negative predicted value 100% (95% CI: 99.6-100) and only 39 non CF's were false positive (39/900, 4.3%; specificity 95.7%, 95%CI: 94.2-96.9, positive predicted value 54.1% with a 95%CI: 43.4-65.0). Increasing the diagnostic limit to 80 mmol/L, the rate fell to 0.3% (3/900). CF patients had a median conductivity of 115 mmol/L; the non-CF a median of 37 mmol/L. In conclusion, the Nanoduct(R) test is a reliable diagnostic tool for CF diagnosis: It has a failure rate comparable to other sweat tests and can be used as a simple bedside test for fast and reliable exclusion, diagnosis or suspicion of CF. In cases with borderline conductivity (60-80 mmol/L) other additional methods (determination of chloride and genotyping) are indicated.
Resumo:
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically naïve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.