943 resultados para Power take-off optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS subject classification: 90B60, 90B50, 90A80.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lasers with random distributed feedback (DFB) owing to Rayleigh scattering in optical fibers [1] have attracted a great interest: a number of papers demonstrating new laser schemes and applications have been proposed [2-7] recently. Moreover, the generation output power and, more generally, generation power distribution could be described both analytically and numerically within simple balance models [8-9]. However, spectral properties of random DFB fiber lasers are not studied except some attempt made in [10]. Generation spectrum of random DFB fiber laser is quite broad (more than 1 nm), and physical mechanisms of its formation and broadening are still unclear. There is no any practical solution up to date to minimize the generation spectrum width. Here we experimentally show the way to minimize the generation spectral width. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive numerical investigations are undertaken to analyze and compare, for the first time, the performance, techno-economy, and power consumption of three-level electrical Duobinary, optical Duobinary, and PAM-4 modulation formats as candidates for high-speed next-generation PONs supporting downstream 40 Gb/s per wavelength signal transmission over standard SMFs in C-band. Optimization of transceiver bandwidths are undertaken to show the feasibility of utilizing low-cost and band-limited components to support next-generation PON transmissions. The effect of electro-absorption modulator chirp is examined for electrical Duobinary and PAM-4. Electrical Duobinary and optical Duobinary are powerefficient schemes for smaller transmission distances of 10 km SMFs and optical Duobinary offers the best receiver sensitivity albeit with a relatively high transceiver cost. PAM-4 shows the best power budget and costefficiency for larger distances of around 20 km, although it consumes more power. Electrical Duobinary shows the best trade-off between performance, cost and power dissipation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern high-power, pulsed lasers are driven by strong intracavity fluctuations. Critical in driving the intracavity dynamics is the nontrivial phase profiles generated and their periodic modification from either nonlinear mode-coupling, spectral filtering or dispersion management. Understanding the theoretical origins of the intracavity fluctuations helps guide the design, optimization and construction of efficient, high-power and high-energy pulsed laser cavities. Three specific mode-locking component are presented for enhancing laser energy: waveguide arrays, spectral filtering and dispersion management. Each component drives a strong intracavity dynamics that is captured through various modeling and analytic techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyzes the physical phenomena that take place inside an 1 kg/h bubbling fluidized bed reactor located at Aston University and presents a geometrically modified version of it, in order to improve certain hydrodynamic and gas flow characteristics. The bed uses, in its current operation, 40 L/min of N2 at 520 °C fed through a distributor plate and 15 L/min purge gas stream, i.e., N2 at 20 °C, via the feeding tube. The Eulerian model of FLUENT 6.3 is used for the simulation of the bed hydrodynamics, while the k - ε model accounts for the effect of the turbulence field of one phase on the other. The three-dimensional simulation of the current operation of the reactor showed that a stationary bubble was formed next to the feeding tube. The size of the permanent bubble reaches up to the splash zone of the reactor, without any fluidizaton taking place underneath the feeder. The gas flow dynamics in the freeboard of the reactor is also analyzed. A modified version of the reactor is presented, simulated, and analyzed, together with a discussion on the impact of the flow dynamics on the fast pyrolysis of biomass. © 2010 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A szerző egy, a szennyezőanyag-kibocsátás európai kereskedelmi rendszerében megfelelésre kötelezett gázturbinás erőmű szén-dioxid-kibocsátását modellezi négy termékre (völgy- és csúcsidőszaki áramár, gázár, kibocsátási kvóta) vonatkozó reálopciós modell segítségével. A profitmaximalizáló erőmű csak abban az esetben termel és szennyez, ha a megtermelt áramon realizálható fedezete pozitív. A jövőbeli időszak összesített szén-dioxid-kibocsátása megfeleltethető európai típusú bináris különbözetopciók összegének. A modell keretein belül a szén-dioxid-kibocsátás várható értékét és sűrűségfüggvényét becsülhetjük, az utóbbi segítségével a szén-dioxid-kibocsátási pozíció kockáztatott értékét határozhatjuk meg, amely az erőmű számára előírt megfelelési kötelezettség teljesítésének adott konfidenciaszint melletti költségét jelenti. A sztochasztikus modellben az alaptermékek geometriai Ornstein-Uhlenbeck-folyamatot követnek. Ezt illesztette a szerző a német energiatőzsdéről származó publikus piaci adatokra. A szimulációs modellre támaszkodva megvizsgálta, hogy a különböző technológiai és piaci tényezők ceteris paribus megváltozása milyen hatással van a megfelelés költségére, a kockáztatott értékére. ______ The carbon-dioxide emissions of an EU Emissions Trading System participant, gas-fuelled power generator are modelled by using real options for four underlying instruments (peak and off-peak electricity, gas, emission quota). This profit-maximizing power plant operates and emits pollution only if its profit (spread) on energy produced is positive. The future emissions can be estimated by a sum of European binary-spread options. Based on the real-option model, the expected value of emissions and its probability-density function can be deducted. Also calculable is the Value at Risk of emission quota position, which gives the cost of compliance at a given confidence level. To model the prices of the four underlying instruments, the geometric Ornstein-Uhlenbeck process is supposed and matched to public available price data from EEX. Based on the simulation model, the effects of various technological and market factors are analysed for the emissions level and the cost of compliance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major barrier to practical optimization of pavement preservation programming has always been that for formulations where the identity of individual projects is preserved, the solution space grows exponentially with the problem size to an extent where it can become unmanageable by the traditional analytical optimization techniques within reasonable limit. This has been attributed to the problem of combinatorial explosion that is, exponential growth of the number of combinations. The relatively large number of constraints often presents in a real-life pavement preservation programming problems and the trade-off considerations required between preventive maintenance, rehabilitation and reconstruction, present yet another factor that contributes to the solution complexity. In this research study, a new integrated multi-year optimization procedure was developed to solve network level pavement preservation programming problems, through cost-effectiveness based evolutionary programming analysis, using the Shuffled Complex Evolution (SCE) algorithm.^ A case study problem was analyzed to illustrate the robustness and consistency of the SCE technique in solving network level pavement preservation problems. The output from this program is a list of maintenance and rehabilitation treatment (M&R) strategies for each identified segment of the network in each programming year, and the impact on the overall performance of the network, in terms of the performance levels of the recommended optimal M&R strategy. ^ The results show that the SCE is very efficient and consistent in the simultaneous consideration of the trade-off between various pavement preservation strategies, while preserving the identity of the individual network segments. The flexibility of the technique is also demonstrated, in the sense that, by suitably coding the problem parameters, it can be used to solve several forms of pavement management programming problems. It is recommended that for large networks, some sort of decomposition technique should be applied to aggregate sections, which exhibit similar performance characteristics into links, such that whatever M&R alternative is recommended for a link can be applied to all the sections connected to it. In this way the problem size, and hence the solution time, can be greatly reduced to a more manageable solution space. ^ The study concludes that the robust search characteristics of SCE are well suited for solving the combinatorial problems in long-term network level pavement M&R programming and provides a rich area for future research. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Access to healthcare is a major problem in which patients are deprived of receiving timely admission to healthcare. Poor access has resulted in significant but avoidable healthcare cost, poor quality of healthcare, and deterioration in the general public health. Advanced Access is a simple and direct approach to appointment scheduling in which the majority of a clinic's appointments slots are kept open in order to provide access for immediate or same day healthcare needs and therefore, alleviate the problem of poor access the healthcare. This research formulates a non-linear discrete stochastic mathematical model of the Advanced Access appointment scheduling policy. The model objective is to maximize the expected profit of the clinic subject to constraints on minimum access to healthcare provided. Patient behavior is characterized with probabilities for no-show, balking, and related patient choices. Structural properties of the model are analyzed to determine whether Advanced Access patient scheduling is feasible. To solve the complex combinatorial optimization problem, a heuristic that combines greedy construction algorithm and neighborhood improvement search was developed. The model and the heuristic were used to evaluate the Advanced Access patient appointment policy compared to existing policies. Trade-off between profit and access to healthcare are established, and parameter analysis of input parameters was performed. The trade-off curve is a characteristic curve and was observed to be concave. This implies that there exists an access level at which at which the clinic can be operated at optimal profit that can be realized. The results also show that, in many scenarios by switching from existing scheduling policy to Advanced Access policy clinics can improve access without any decrease in profit. Further, the success of Advanced Access policy in providing improved access and/or profit depends on the expected value of demand, variation in demand, and the ratio of demand for same day and advanced appointments. The contributions of the dissertation are a model of Advanced Access patient scheduling, a heuristic to solve the model, and the use of the model to understand the scheduling policy trade-offs which healthcare clinic managers must make. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical optimization is a technique where a computer is used to explore design parameter combinations to find extremes in performance factors. In multi-objective optimization several performance factors can be optimized simultaneously. The solution to multi-objective optimization problems is not a single design, but a family of optimized designs referred to as the Pareto frontier. The Pareto frontier is a trade-off curve in the objective function space composed of solutions where performance in one objective function is traded for performance in others. A Multi-Objective Hybridized Optimizer (MOHO) was created for the purpose of solving multi-objective optimization problems by utilizing a set of constituent optimization algorithms. MOHO tracks the progress of the Pareto frontier approximation development and automatically switches amongst those constituent evolutionary optimization algorithms to speed the formation of an accurate Pareto frontier approximation. Aerodynamic shape optimization is one of the oldest applications of numerical optimization. MOHO was used to perform shape optimization on a 0.5-inch ballistic penetrator traveling at Mach number 2.5. Two objectives were simultaneously optimized: minimize aerodynamic drag and maximize penetrator volume. This problem was solved twice. The first time the problem was solved by using Modified Newton Impact Theory (MNIT) to determine the pressure drag on the penetrator. In the second solution, a Parabolized Navier-Stokes (PNS) solver that includes viscosity was used to evaluate the drag on the penetrator. The studies show the difference in the optimized penetrator shapes when viscosity is absent and present in the optimization. In modern optimization problems, objective function evaluations may require many hours on a computer cluster to perform these types of analysis. One solution is to create a response surface that models the behavior of the objective function. Once enough data about the behavior of the objective function has been collected, a response surface can be used to represent the actual objective function in the optimization process. The Hybrid Self-Organizing Response Surface Method (HYBSORSM) algorithm was developed and used to make response surfaces of objective functions. HYBSORSM was evaluated using a suite of 295 non-linear functions. These functions involve from 2 to 100 variables demonstrating robustness and accuracy of HYBSORSM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1999 Colombia has experienced dramatic increases in emigration, particularly the emigration of women towards the U.S. as fiancées of U.S. citizens or residents. Parallel to this trend is the increased number of websites facilitating these Colombian-American matches. This dissertation investigates the agency of Colombian women and American men who pursue romantic courtship through the services of International Marriage Brokers (IMBs) from the “Gendered Geographies of Power” (GGP) framework of analysis. It examines how both groups’ social locations, their positioning in multiple axes of differentiation including gender, nationality and social class, affects how and why they exert their agency across and within different geographic scales. Most importantly, it investigates the role the imagination plays (imagination work) in both men and women’s agency, an aspect of the GGP framework that has been under-researched and theorized to date. The research also finds that this imagination work is promoted and cultivated in deeply gendered ways by IMBs seeking to profit off this transnational courtship. ^ Employing data collected via interviews and content analysis of IMBs’ websites, the dissertation analyzes comparatively the expectations each group (women, men and IMBs) bring to their imagination work and experiences of the courtship marketplace. A central question posed and answered in the dissertation is “What do women and men courting each other in cyberspace seek and do they find it?” The dissertation finds that the men seek “traditional” women and the women seek “liberated” less “macho” men. Ironically, the men find Colombian women who are among the most “liberated” women in their homeland but who downplay this aspect of themselves in order to strategically find a more modern man and migrate abroad where they expect to find greater personal and professional opportunities.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various nondestructive testing (NDT) technologies for construction and performance monitoring have been studied for decades. Recently, the rapid evolution of wireless sensor network (WSN) technologies has enabled the development of sensors that can be embedded in concrete to monitor the structural health of infrastructure. Such sensors can be buried inside concrete and they can collect and report valuable volumetric data related to the health of a structure during and/or after construction. Wireless embedded sensors monitoring system is also a promising solution for decreasing the high installation and maintenance cost of the conventional wire based monitoring systems. Wireless monitoring sensors need to operate for long time. However, sensor batteries have finite life-time. Therefore, in order to enable long operational life of wireless sensors, novel wireless powering methods, which can charge the sensors’ rechargeable batteries wirelessly, need to be developed. The optimization of RF wireless powering of sensors embedded in concrete is studied here. First, our analytical results focus on calculating the transmission loss and propagation loss of electromagnetic waves penetrating into plain concrete at different humidity conditions for various frequencies. This analysis specifically leads to the identification of an optimum frequency range within 20–80 MHz that is validated through full-wave electromagnetic simulations. Second, the effects of various reinforced bar configurations on the efficiency of wireless powering are investigated. Specifically, effects of the following factors are studied: rebar types, rebar period, rebar radius, depth inside concrete, and offset placement. This analysis leads to the identification of the 902–928 MHz ISM band as the optimum power transmission frequency range for sensors embedded in reinforced concrete, since antennas working in this band are less sensitive to the effects of varying humidity as well as rebar configurations. Finally, optimized rectennas are designed for receiving and/or harvesting power in order to charge the rechargeable batteries of the embedded sensors. Such optimized wireless powering systems exhibit significantly larger efficiencies than the efficiencies of conventional RF wireless powering systems for sensors embedded in plain or reinforced concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^