905 resultados para Poverty Transitions
Resumo:
The review aimed to investigate two central issues.
1.To what extent is there evidence that poverty increases the amount of child abuse and neglect (CAN), and/or affects the nature of child abuse and neglect? How does this occur, how large are these effects and to whom do they apply?
2.To what extent is there evidence that CAN increases poverty later in life, how large are these effects and to whom do they apply?
Within these two issues evidence about equality and diversity, and cost were considered throughout.
Resumo:
This is a note on the Northern Ireland High Court decision of 30 June 2015 that the Northern Ireland Executive had acted unlawfully in failing to fulfil its statutory duty to adopt a strategy setting out proposals for tackling poverty, social exclusion and patterns of deprivation based on objective need.
Resumo:
Noncollinear four-wave-mixing (FWM) techniques at near-infrared (NIR), visible, and ultraviolet frequencies have been widely used to map vibrational and electronic couplings, typically in complex molecules. However, correlations between spatially localized inner-valence transitions among different sites of a molecule in the extreme ultraviolet (XUV) spectral range have not been observed yet. As an experimental step toward this goal, we perform time-resolved FWM spectroscopy with femtosecond NIR and attosecond XUV pulses. The first two pulses (XUV-NIR) coincide in time and act as coherent excitation fields, while the third pulse (NIR) acts as a probe. As a first application, we show how coupling dynamics between odd- and even-parity, inner-valence excited states of neon can be revealed using a two-dimensional spectral representation. Experimentally obtained results are found to be in good agreement with ab initio time-dependent R-matrix calculations providing the full description of multielectron interactions, as well as few-level model simulations. Future applications of this method also include site-specific probing of electronic processes in molecules.
Resumo:
Aims. We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation.
Methods. The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation.
Results. Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive.
Conclusions. We believe that the present transition data are the best currently available.
Resumo:
Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 3s23p3 configuration of Cl III are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cl III. These states are formed from the 3s23p3, 3s3p4, 3s23p23d and 3s23p24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [log T(K) = 3.3 - log T(K) = 5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [log T(K) = 3.3 - log T(K) = 4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the 4So ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion S x are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4SO, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e- + ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S x, and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 4.6-6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion NeIV are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground-state configuration. The expansion of the total wavefunction incorporates the lowest 11 LS eigenstates of NeIV, consisting of eight n = 2 terms with configurations 2s22p3, 2s2p4 and 2p5, together with three n = 3 states of configuration 2s22p23s. We present in graphical form the effective collision strengths obtained by thermally averaging the collision strengths over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 3.6 to log T(K) = 6.1 (the range appropriate for astrophysical applications). Comparisons are made with the earlier, less sophisticated close-coupling calculation of Giles, and excellent agreement is found in the limited temperature region where a comparison is possible [log T(K) = 3.7 to log 7(K) = 4.3]. At higher temperatures the present data are the only reliable results currently available.
Resumo:
The multichannel R-matrix method is used to compute electron impact excitation collision strengths in Ar IV for all fine-structure transitions among the 4S°, 2D° and 2P° levels in the 3s 23p 3 ground configuration. Included in the expansion of the total wavefunction are the lowest 13 LS target eigenstates of Ar iv formed from the 3s 23p 3, 3s3p 4 and 3s 23p 23d configurations. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are presented for all 10 fine-structure transitions over a wide range of electron temperatures of astrophysical interest (T e = 2000-100 000 K). Comparisons are made with an earlier 7-state close-coupling calculation by Zeippen, Butler & Le Bourlot, and significant differences are found to occur for many of the forbidden transitions considered, in particular those involving the 4S° ground state, where discrepancies of up to a factor of 3 are found in the low-temperature region. © 1997 RAS.
Resumo:
The solid-fluid transition properties of the n - 6 Lennard-Jones system are studied by means of extensive free energy calculations. Different values of the parameter n which regulates the steepness of the short-range repulsive interaction are investigated. Furthermore, the free energies of the n < 12 systems are calculated using the n = 12 system as a reference. The method relies on a generalization of the multiple histogram method that combines independent canonical ensemble simulations performed with different Hamiltonians and computes the free energy difference between them. The phase behavior of the fullerene C60 solid is studied by performing NPT simulations using atomistic models which treat each carbon in the molecule as a separate interaction site with additional bond charges. In particular, the transition from an orientationally frozen phase at low temperatures to one where the molecules are freely rotating at higher temperatures is studied as a function of applied pressure. The adsorption of molecular hydrogen in the zeolite NaA is investigated by means of grand-canonical Monte Carlo, in a wide range of temperatures and imposed gas pressures, and results are compared with available experimental data. A potential model is used that comprises three main interactions: van der Waals, Coulomb and induced polarization by the permanent electric field in the zeolite.
Resumo:
Communication and cooperation between billions of neurons underlie the power of the brain. How do complex functions of the brain arise from its cellular constituents? How do groups of neurons self-organize into patterns of activity? These are crucial questions in neuroscience. In order to answer them, it is necessary to have solid theoretical understanding of how single neurons communicate at the microscopic level, and how cooperative activity emerges. In this thesis we aim to understand how complex collective phenomena can arise in a simple model of neuronal networks. We use a model with balanced excitation and inhibition and complex network architecture, and we develop analytical and numerical methods for describing its neuronal dynamics. We study how interaction between neurons generates various collective phenomena, such as spontaneous appearance of network oscillations and seizures, and early warnings of these transitions in neuronal networks. Within our model, we show that phase transitions separate various dynamical regimes, and we investigate the corresponding bifurcations and critical phenomena. It permits us to suggest a qualitative explanation of the Berger effect, and to investigate phenomena such as avalanches, band-pass filter, and stochastic resonance. The role of modular structure in the detection of weak signals is also discussed. Moreover, we find nonlinear excitations that can describe paroxysmal spikes observed in electroencephalograms from epileptic brains. It allows us to propose a method to predict epileptic seizures. Memory and learning are key functions of the brain. There are evidences that these processes result from dynamical changes in the structure of the brain. At the microscopic level, synaptic connections are plastic and are modified according to the dynamics of neurons. Thus, we generalize our cortical model to take into account synaptic plasticity and we show that the repertoire of dynamical regimes becomes richer. In particular, we find mixed-mode oscillations and a chaotic regime in neuronal network dynamics.