979 resultados para Potato starch
Resumo:
Antimicrobial photodynamic treatment (PDT) is a promising method that can be used to control localized mycoses or kill fungi in the environment. A major objective of the current study was to compare the conidial photosensitization of two fungal species (Metarhizium anisopliae and Aspergillus nidulans) with methylene blue (MB) and toluidine blue (TBO) under different incubation and light conditions. Parameters examined were media, photosensitizer (PS) concentration and light source. PDT with MB and TBO resulted in an incomplete inactivation of the conidia of both fungal species. Conidial inactivation reached up to 99.7%, but none of the treatments was sufficient to achieve a 100% fungicidal effect using either MB or TBO. PDT delayed the germination of the surviving conidia. Washing the conidia to remove unbound PS before light exposure drastically reduced the photosensitization of A. nidulans. The reduction was much smaller in M. anisopliae conidia, indicating that the conidia of the two species interact differently with MB and TBO. Conidia of green and yellow M. anisopliae mutants were less affected by PDT than mutants with white and violet conidia. In contrast to what occurred in PBS, photosensitization of M. anisopliae and A. nidulans conidia was not observed when PDT was performed in potato dextrose media.
Resumo:
A marker database was compiled for isolates of the potato and tomato late blight pathogen, Phytophthora infestans, originating from 41 locations which include 31 countries plus 10 regions within Mexico. Presently, the database contains information on 1,776 isolates for one or more of the following markers: restriction fragment length polymorphism (RFLP) fingerprint consisting of 23 bands; mating type; dilocus allozyme genotype; mitochondrial DNA haplotype; sensitivity to the fungicide metalaxyl; and virulence. In the database, 305 entries have unique RFLP fingerprints and 258 entries have unique multilocus genotypes based on RFLP fingerprint, dilocus allozyme genotype, and mating type. A nomenclature is described for naming multilocus genotypes based on the International Organization for Standardization (ISO) two-letter country code and a unique number, Forty-two previously published multilocus genotypes are represented in the database with references to publications. As a result of compilation of the database, seven new genotypes were identified and named. Cluster analysis of genotypes from clonally propagated populations worldwide generally confirmed a previously published classification of old and new genotypes. Genotypes from geographically distant countries were frequently clustered, and several old and new genotypes were found in two or more distant countries. The cluster analysis also demonstrated that A2 genotypes from Argentina differed from all others. The database is available via the Internet, and thus can serve as a resource for Phytophthora workers worldwide.
Resumo:
Acetylcholinesterase is the target of organophosphate and carbamate pesticides. Organophosphate resistance is widespread in the cattle tick, Boophilus microplus, in Australia. We have isolated a cDNA of acetylcholinesterase from B. microplus and show that it would encode a protein 62 kDa in size. The predicted amino acid sequence contains all the residues characteristic of an acetylcholinesterase. Alternative splicing of the transcript was detected at both the 5' and 3' ends. Alternative splicing at the 5' end would result in two proteins differing by six amino acids. This is the first report of alternative splicing of the N-terminal coding region in a cholinesterase. No point mutations were detected in the acetylcholinesterase gene from organophosphate resistant strains of B. microplus. Alternative explanations for resistance to organophosphates in B. microplus are discussed. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Female reproductive tissues of the ornamental tobacco amass high levels of serine proteinase inhibitors (PIs) for protection against pests and pathogens. These PIs are produced from a precursor protein composed of six repeats each with a protease reactive site. Here we show that proteolytic processing of the precursor generates five single-chain PIs and a remarkable two-chain inhibitor formed by disulfide-bond Linkage of Nand C-terminal peptide fragments. Surprisingly, PI precursors adopt this circular structure regardless of the number of inhibitor domains, suggesting this bracelet-like conformation is characteristic of the widespread potato inhibitor II (Pot II) protein family.
Resumo:
The modified fatty acids, (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid, 3-[(all-Z)-(eicosa-5,8,11,14-tetraenylthio)]propionic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid, N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine and N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid, all react with soybean 15-lipoxygenase. The products were treated with triphenylphosphine to give alcohols, which were isolated using HPLC. Analysis of the alcohols using negative ion tandem electrospray mass spectrometry, and by comparison with compounds obtained by autoxidation of arachidonic acid, shows that each enzyme catalysed oxidation occurs at the omega -6 position of the substrate. In a similar fashion, it has been found that (Z,Z,Z)-(octadeca-6,9,12-trienyloxy)acetic acid, (Z,Z,Z)-(octadeca-9,12,15-trienyloxy)acetic acid, (all-Z)-(eicosa-5,8,11,14-tetraenylthio)acetic acid and N-[(all-Z)-(eicosa-5,8, 11.14-tetraenylthio)]propionic acid each undergoes regioselective oxidation at the carboxyl end of the polyene moiety on treatment with potato 5-lipoxygenase. Neither (all-Z)-(eicosa-5,8,11,14-tetraenylthio)succinic acid nor N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]aspartic acid reacts in the presence of this enzyme, while N-[(all-Z)-(eicosa-5,8,11,14-tetraenoyl)]glycine affords the C11' oxidation product. The alcohol derived from (Z,Z,Z)-(octadeca-6,9, 12-trienyloxy)acetic acid using the 15-lipoxygenase reacts at the C6' position with the 5-lipoxygenase. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
in December 1997,196 soil and snow samples were collected from Vestvold Hills, Davis Base, Antarctica. Two isolates, CBS 8804 T (pink colonies) and CBS 8805 (yellow colonies), were shown by proteome analysis and DNA sequencing to represent the same species. Results from the sequencing of the D1/D2 region of the large rDNA subunit placed this species in the hymenomycetous tree in a unique sister clade to the Trichosporonalles and the Tremellalles. The clade consists of Holtermannia corniformis CBS 6979 and CBS strains 8804(T) 8805, 8016, 7712, 7713 and 7743. Morphological and physiological characteristics placed this species in the genus Cryptococcus, with characteristics including the assimilation Of D-glucuronate and myo-inositol, no fermentation, positive Diazonium blue B and urease reactions, absence of sexual reproduction and production of starch-like compounds. Fatty acid analysis identified large proportions of polyunsaturated lipids, mainly linolleic (C-18.2) and, to a lesser extent, linolenic (C-18.3) acids. On the basis of the physiological and phylogenetic data, isolates CBS 8804(T) and CBS 8805 are described as Cryptococcus nyarrowii sp. nov.
Resumo:
A storage trial of two varieties of adzuki (Vigna angularis), Bloodwood and Erimo, produced in Australia, was conducted to determine the effect of various combinations of temperature, humidity and length of storage on bean quality. The beans were stored for up to 6 mo under the following conditions: temperature (10, 20 and 30degreesC), relative humidity (RH) (40 and 65%). Storage of adzuki at elevated temperature (30degreesC) and low relative humidity (40%) resulted in the greatest loss of bean moisture, increase in hydration times and decrease in bean cooking quality, i.e. increased hardness of cooked beans. The best storage conditions for the preservation of adzuki quality were 10degreesC and 65% RH.
Resumo:
Spray-dried blood plasma (DBP) (10.9 g/100 g [w/w] nitrogen) was added to medium-protein biscuit flour (1.4 g/100 g N) during pasta manufacture. High-protein durum semolina (2.0 g/100 g N) Was used to produce the control pasta. Sensory data indicated that the addition of DBP produced pasta with significantly better colour intensity and acceptability. aroma intensity, flaN our intensity. textural strength, texture acceptability, aftertaste intensity, aftertaste acceptability. and overall acceptability The DBP/biscuit flour formulation that gave the optimum balance between pasta protein content and organoleptic acceptability contained 2.2 g/100 g DBP. A higher content of DBP resulted in increased protein levels, but these pasta formulations, ere less acceptable organoleptically. (C) 2002 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.
Resumo:
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 degrees C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 degrees C, with a t(50) of 45 min at 60 degrees C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl alpha-D-maltoside, methyl-alpha-D-glucopyranoside, pullulan, alpha- and beta-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in alpha-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-alpha-D-glucan glucohydrolase).
Resumo:
An alpha-amylase produced by Paecilomyces variotii was purified by DEAE-cellulose ion exchange chromatography, followed by Sephadex G-100 gel filtration and electroelution. The alpha-amylase showed a molecular mass of 75 kDa (SDS-PAGE) and pl value of 4.5. Temperature and pH optima were 60 degrees C and 4.0, respectively. The enzyme was stable for 1 h at 55 degrees C, showing a t(50) of 53 min at 60 degrees C. Starch protected the enzyme against thermal inactivation. The a-amylase was more stable in alkaline pH. It was activated mainly by calcium and cobalt, and it presented as a glycoprotein with 23% carbohydrate content. The enzyme preferentially hydrolyzed starch and, to a lower extent, amylose and amylopectin. The K(m) of alpha-amylase on Reagen (R) and Sigma (R) starches were 4.3 and 6.2 mg/mL, respectively. The products of starch hydrolysis analyzed by TLC were oligosaccharides such as maltose and maltotriose. The partial amino acid sequence of the enzyme presented similarity to alpha-amylases from Bacillus sp. These results confirmed that the studied enzyme was an a-amylase ((1 -> 4)-alpha-glucan glucanohydrolase). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40A degrees C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0-5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0-9.5. The temperature optimum was 65A degrees C and retained 100% activity after 240 min at 60A degrees C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K (m) was calculated as 0.32 mg ml(-1). Circular dichroism spectroscopy estimated a secondary structure content of 33% alpha-helix, 17% beta-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.
Resumo:
An extracellular alpha-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS-PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical alpha-glucosidase activity, hydrolyzing p-nitrophenyl alpha-d-glucopyranoside and presented an optimum temperature and pH of 65A degrees C and 6.0, respectively. In the absence of substrate the purified alpha-glucosidase was stable for 60 min at 60A degrees C, presenting t (50) of 90 min at 65A degrees C. Hydrolysis of polysaccharide substrates by alpha-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and beta-ciclodextrin were poor substrates, and sucrose and alpha-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an alpha-helical content of 31% and a beta-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.
Resumo:
The spray drying method was used to prepare luminescent microspheres. These microspheres were prepared by spraying an aqueous solution of dextrin and an europium(III) complex with subsequent drying in a hot medium. The spray dried powder was characterized by scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). Particle size distribution was estimated from SEM images. The ultrasonic spray drying technique was successfully applied to yield a microparticulated and red luminescent powder composed by the [Eu(dpa)(3)](3-) stop (dpa = dipicolinic acid) complex incorporated in dextrin microspheres.
Resumo:
Photophysical properties of porphyrins in aqueous solutions are strongly affected by aggregation. One possible solution to this problem is to encapsulate the porphyrin into polymeric spheres, to provide an environment where the photosensitizer can be administered in its monomeric form in such treatments as photodynamic therapy. Here we report the microencapsulation of the meso-tetrakis(4-sulphonatophenyl) porphyrin (TPPS4) photosensitizer by the ultrasonic spray-drying technique. The encapsulated TPPS4 was morphologically characterized by scanning electron microscopy, and its photophysical properties were studied and compared with those of a physical blend of dextrin and TPPS4. We Successfully encapsulated TPPS4 into dextrin microspheres, and the encapsulated photosensitizer displays higher luminescence intensity than that of the prepared physical blends.